The Use of Test Scores for Classification Decisions with Threshold Utility

Wim J. van der Linden
University of Twente, The Netherlands

The classification problem consists of assigning subjects to one of several available treatments on the basis of their test scores, where the success of each treatment is measured by a different criterion. It is indicated how this problem can be formulated as an (empirical) Bayes decision problem. As an example, the case of classification with a threshold utility function is analyzed, and optimal assignment rules are derived. The results are illustrated empirically with data from a classification problem in which achievement test data are used to assign students to appropriate continuation schools.

One of the basic problems in test-based decisionmaking is the classification problem. Typically, the classification problem confronts the decision-maker with several “treatments” to which subjects have to be assigned. For each treatment there is a qualitatively different criterion representing the success of exposing the subject to the treatment. The only thing the decisionmaker has at his or her disposal is the subjects’ scores on a certain aptitude or performance test administered prior to the treatment.

Examples of test-based classification problems include vocational guidance situations in which most promising types of schools or careers must be identified; classification of students in individualized instructional systems with tracks at different levels; testing for the military service; selecting one out of different available therapies in clinical settings, and so on.

Obviously, the classification problem is a decision problem, and as such it has definite relationships to other decision problems in educational and psychological testing. Elsewhere, the author has proposed a typology of test-based decisionmaking that, in addition to the classification decision, has the selection, mastery, and placement decisions as basic types of decisionmaking (van der Linden, 1985). The classification decision resembles the placement decision in that the latter is a treatment-assignment problem as well. The crucial difference, however, is that in placement decisions each

The author is indebted to Michel A. Zwarts for providing the data for the empirical example.
treatment leads to the same criterion, whereas in classification decisions each treatment has a different criterion. An example of a placement decision is the aptitude-treatment-interaction paradigm in instructional psychology, where students are allowed to reach the same educational objectives via different instructional treatments. Selection and mastery decisions differ from classification and placement decisions by the presence of only one treatment. In these decisions, it is the decisionmaker’s task to decide whether or not to accept subjects for a certain treatment, whether or not they have profited enough from a treatment to be dismissed. The four basic types of decisions briefly defined here can be met both in their pure forms or in combination with each other. The latter is the case, for instance, in decisionmaking in individualized study systems that can be conceived of as networks consisting of these various types of decisions as nodes (van der Linden & Vos, 1986). Also, further refinements within each type are possible, for instance, by imposing quota restrictions or distinguishing between subpopulations varying on a relevant attribute (cf. van der Linden, 1985).

An appropriate framework for dealing with decision problems such as the above is (empirical) Bayesian decision theory (e.g., Raiffa, 1968). Applications of Bayesian decision theory to selection (e.g., Chuang, Chen, & Novick, 1981; Cronbach & Gleser, 1965; Novick & Lindley, 1979), mastery (e.g., Hambleton & Novick, 1973; Huynh, 1976; van der Linden, 1980; van der Linden & Mellenbergh, 1977), and placement decision problems (e.g., Cronbach & Gleser, 1965; van der Linden, 1981) are amply available now, whereas Bayesian theory has also been used to deal with the problem of selection from different subpopulations (e.g., Mellenbergh & van der Linden, 1981; Petersen, 1976; Petersen & Novick, 1976). To date, however, the classification problem has been devoid of a decision-theoretic analysis. The traditional approach to this type of problem has been the use of linear-regression techniques. For each treatment the regression line of the utility of its criterion scores on the test scores is estimated, and subjects are assigned to treatments on the basis of their predicted utility scores. In the case of a test battery instead of a single test, multiple-regression analysis has been the choice. This approach has led to the concept of differential validity (Horst, 1955; Mollenkopf, 1950), which has had a prominent place in the literature on constructing tests for classification decisions.

The difference between the above approach and a decision-theoretic one is that the former first models the problem as a (continuous) point prediction problem and only then introduces the aspect of classifying subjects into different treatments on the basis of their predicted utility scores. It will become clear below that a decision-theoretic approach, on the other hand, directly models the problem as a decision problem with discrete actions. This provides the decisionmaker with the possibility of weighting decision errors explicitly via the specification of a utility function. Also, the model takes into account the full (posterior) distributions of criterion scores given the test score, and, consequently, does not necessarily entail such assump-
tions as linear regression of criterion on predictor scores and homoscedasticity of “prediction errors.” However, there are specific conditions on the probability distributions and utility functions for which the Bayesian solutions boil down to the linear regression solutions. An example of this will be given below.

The purpose of this paper is to demonstrate how the classification problem can be formalized as a problem of Bayesian decision making. In particular, the case of classification with a threshold utility function is analyzed, and for this case it is indicated how optimal rules can be found for a variety of conditions. As an example of classification decisions with threshold utility, a problem is considered that is well-known in certain guidance situations: the choice of an appropriate continuation school. A case with empirical data will be used to illustrate the selection of an optimal decision rule for this problem.

Before embarking on this, it is re-emphasized that although much of the following logic resembles that of the Bayesian approach to the mastery, selection, and placement problems dealt with in the papers cited earlier, the classification problem has the distinctive feature of possessing more than one treatment, each having its own criterion. Consequently, the probability distributions and the utility functions in the model are all indexed by a different treatment and defined on a different criterion. In a more formal sense, the goal of this paper is to explore the consequences of this treatment dependency for the Bayesian approach.

Classification Decisions with Threshold Utility

Suppose that a series of subjects, who can be considered as randomly drawn from some population P, must be classified into $t + 1$ treatments indexed by $j = 0, 1, \ldots, t$. Each treatment leads to a certain distribution of performances of P on its associated criterion, which is denoted by a random variable Y_j with range R_j. The variable Y_j will be considered to be continuous (although in many applications it may be discrete). The test scores observed prior to the treatment are denoted by a random variable X with discrete values $x = 0, \ldots, n$. It is assumed that P yields a joint distribution of test and criterion scores with probability (density) function $\eta_i(x, y_j)$. The classification problem consists of defining a decision rule on x such that the expected utility with respect to sampling from P is maximal.

In the present paper a more specific problem is considered for which it can be assumed that the optimal decision rule has the monotone form of a series of cutting scores on the test:

$$0 = c_0 \leq c_1 \leq \cdots \leq c_t \leq \cdots \leq c_{t+1} = n$$

with $t \leq n$, (1)

where treatment j is assigned in the event of $c_j \leq X < c_{j+1}$ (the second inequality not being strict for $j = t$).

Conditions for monotone Bayes actions with respect to a single parameter are given, for example, in Chuang, Chen, and Novick (1981), Ferguson
Classification Decisions

(1967, sect. 6.1), and Lindgren (1976, sect. 8.3.5), and go back to a basic result by Karlin and Rubin (1956). In general, they imply that the posterior distribution of the parameter is stochastically increasing and that there is an ordering of the actions for which the difference in utility between adjacent pairs of actions changes sign at most once. For the classification problem formalized above, this does not hold without modifications. A set of conditions sufficient for monotone solutions for classification with threshold utilities will be given below.

As an example of a classification decision, consider the case of selecting an optimal continuation school since this can be met in testing for vocational guidance purposes. It is assumed that each of the available schools teaches globally the same subject matter but at different levels so that it is possible to order them with respect to their utilities. Also, each school is finished with a certifying exam that the student may pass or fail. For such cases it seems obvious to define utilities that vary with the levels of attainments at the end of the schools. If only the dichotomy pass-fail is observed, however, threshold utilities may be a proper choice. The following threshold utility function is defined:

\[u_j(y_j) = \begin{cases} w_j & \text{for } y_j \geq d_j, \\ v_j & \text{for } y_j < d_j, \end{cases} \]

with

\[w_j > v_j \quad \text{for } j = 0, \ldots, t, \]

where \(y_j \) can be interpreted, for example, as the grade-point average at the end of school \(j \), \(d_j \) is the minimal value of \(y_j \) for which a student passes, and \(w_j \) and \(v_j \) are the utility of finishing school \(j \) successfully and unsuccessfully, respectively. In addition to Equation 2, it is assumed that the following conditions hold:

\[w_{j-1} - v_{j-1} \leq w_j - v_j, \quad j = 1, \ldots, t, \]

\[\Omega_j(d_j|x) \text{ is decreasing in } x, \quad j = 0, \ldots, t, \]

\[\Omega_{j-1}(d_{j-1}|x) - \Omega_j(d_j|x) \text{ is increasing in } x, \quad j = 1, \ldots, t, \]

where \(\Omega(.)|x \) is defined as the distribution function of \(Y \) given \(X = x \). Since in Equation 2 \(w_j > v_j \) for \(j = 0, \ldots, t \), it follows that Equation 3 is equivalent to the condition of monotone utility in the Bayesian decision problem with a single parameter (e.g., Ferguson, 1967, p. 285). Observe that Equation 3 orders the treatments with respect to \(w_j - v_j \). The condition in Equation 4 corresponds to the condition of a stochastically increasing posterior distribution in the standard problem of a monotone Bayes rule with respect to a single parameter (Chuang, Chen, & Novick, 1981, theorem 2), but it is now required to hold only for \(Y = d_j \). Finally, the condition in Equation 5 relates the posterior distributions to each other, stating that for the treat-

This content downloaded from 130.89.45.231 on Mon, 21 Dec 2015 13:58:15 UTC
All use subject to JSTOR Terms and Conditions
ments ordered higher by their utility difference the probability of a failure decreases quicker in \(x \). Whether this condition holds is dependent on the difficulty of the test for the students in the population. For a test of moderate difficulty, the probabilities of a failure at the lower end of the test score scale will be ordered such that a lower treatment has a smaller probability. Hence, the lower the value of \(j \), the less space there is for the probability to decrease in \(x \), and Equation 5 is likely to hold. If the test gets more difficult, the situation may be more complicated. In each new application it must be checked if Equations 4 and 5 hold.

It follows from the derivations below that Equations 3–5 are sufficient for a monotone solution to a classification problem with threshold utility function (Equation 2).

As monotone solutions are looked for, the expected utility when sampling from \(P \) can be written as

\[
B(c_1, \ldots, c_t) = \sum_{j=0}^{t} \sum_{x=c_j} c_{j+1} \int u_j(y_j) \eta_j(x, y_j) dy_j. \tag{6}
\]

The set of optimal cutting scores in the Bayesian sense is the choice of values for \((c_1, \ldots, c_t)\) maximizing Equation 6.

Case of \(t = 1 \)

First, the case of two treatments \((t = 1)\) is considered, and then the results will be generalized to larger numbers of treatments \((t > 1)\).

Substituting Equation 2 into Equation 6 for \(t = 1 \) and omitting the index of \(c \) gives

\[
B(c) = \int_{x=0}^{c-1} v_0 \eta_0(x, y_0) dy_0 + \int_{x=0}^{c-1} w_0 \eta_0(x, y_0) dy_0 + \\
\sum_{x=c}^{n} v_1 \eta_1(x, y_1) dy_1 + \sum_{x=c}^{n} w_1 \eta_1(x, y_1) dy_1. \tag{7}
\]

Using

\[
\int_{y_j}^{d_j} \eta_j(x, y_j) dy_j = \Omega_j(d_j|x) \lambda(x),
\]

where

\[
\lambda(x) = \lambda_j(x), \quad j = 0, \ldots, t,
\]

is the marginal probability function of \(X \), completion of the first two sums gives

66
Classification Decisions

\[
B(c) = \left[\text{constant} - \sum_{x=c}^{n} \nu_0 \Omega_0(d_0 \mid x) \lambda(x) \right] + \left\{ \text{constant} - \sum_{x=c}^{n} w_0[1 - \Omega_0(d_0 \mid x)] \lambda(x) \right\} + \sum_{x=c}^{n} \nu_1 \Omega_1(d_1 \mid x) \lambda(x)
\]

\[
+ \sum_{x=c}^{n} w_1[1 - \Omega_1(d_1 \mid x)] \lambda(x).
\]

This can be reduced further to

\[
B(c) = \text{constant} + \sum_{x=c}^{n} [(w_0 - \nu_0) \Omega_0(d_0 \mid x) - (w_1 - \nu_1) \Omega_1(d_1 \mid x) + w_1 - w_0] \lambda(x).
\]

The assumption in Equation 5 states that \(\Omega_0(d_0 \mid x) - \Omega_1(d_1 \mid x) \) is increasing in \(x \). Thus, if \(x_1 < x_2 \), it holds that \(\Omega_0(d_0 \mid x_1) - \Omega_1(d_1 \mid x_1) \leq \Omega_0(d_0 \mid x_2) - \Omega_1(d_1 \mid x_2) \), or \(\Omega_0(d_0 \mid x_1) - \Omega_0(d_0 \mid x_2) \leq \Omega_1(d_1 \mid x_1) - \Omega_1(d_1 \mid x_2) \). From Equation 4 it follows that \(\Omega_1(d_1 \mid x_1) - \Omega_1(d_1 \mid x_2) \) is non-negative, whereas Equations 2 and 3 imply that \(0 < w_0 - \nu_0 \leq w_1 - \nu_1 \). Hence, it applies that \((w_0 - \nu_0)[\Omega_0(d_0 \mid x_1) - \Omega_0(d_0 \mid x_2)] \leq (w_1 - \nu_1)[\Omega_1(d_1 \mid x_1) - \Omega_1(d_1 \mid x_2)] \). But then \((w_0 - \nu_0)\Omega_0(d_0 \mid x_1) - (w_1 - \nu_1)\Omega_1(d_1 \mid x_1) \leq (w_0 - \nu_0)\Omega_0(d_0 \mid x_2) - (w_1 - \nu_1)\Omega_1(d_1 \mid x_2) \), and the bracketed quantity in Equation 9 is increasing in \(x \) as well. Since \(\lambda(x) \) is non-negative for all values of \(x \), it thus holds that Equation 9 is maximal for the smallest value of \(x \) for which

\[
(w_0 - \nu_0)\Omega_0(d_0 \mid x) - (w_1 - \nu_1)\Omega_1(d_1 \mid x) + w_1 - w_0
\]

is positive. This solution is unique if in the region of \(x \) values in which the expression in Equation 9 changes sign \(\lambda(x) \) is nonzero, and the monotonicity condition in Equation 5 is strict (and so for at least one treatment Equation 4 is strict as well). If one of these conditions is not met, more than one solution may exist, which are all equivalent in the sense of yielding the same expected utility. In practice, the solution is found by estimating the conditional distributions of criterion scores given predictor scores, checking for Equations 4 and 5, and substituting the estimates into Equation 10. It is also possible to fit a model for the distributions and estimate the solution under this model. Small-sample solutions of Equation 10 can be obtained only for models with known parameters.

Case of \(t > 1 \)

The generalization to more than two treatments with threshold utility follows from a derivation along the same line as in Equations 6–10. The results turn out to be simple and amount to applying the above findings to each pair of adjacent treatments. In principle, this procedure parallels the one for placement decisions with more than two treatments (van der Linden, 1981).
A Linear Regression Solution

As noted earlier, specific conditions on the probability distributions and utility functions exist for which the Bayes solution boils down to a linear regression one.

Because the linear regression approach is not concerned with any differences in utilities between treatments, it is assumed that w_j and v_j in Equation 2 take the same values for all treatments. It follows that $w_0 - v_0 = w_1 - v_1$ and $w_1 - w_0 = 0$, and that Equation 10 is proportional to

$$
\Omega_0(d_0 | x) - \Omega_1(d_1 | x).
$$

(11)

If normal distributions of Y_j given $X = x$ can be assumed, Equation 11 is replaced by

$$
\frac{d_0 - E_0(Y|x)}{[\text{Var}_0(Y|x)]^{1/2}} - \frac{d_1 - E_1(Y|x)}{[\text{Var}_1(Y|x)]^{1/2}},
$$

where $E_j(Y|x)$ and $\text{Var}_j(Y|x)$ are the conditional expectations and variances, respectively. The choice of normal distributions can be defended from a curve-fitting point of view. It should then be checked whether this assumption is reasonable for the data at hand and whether conditions (Equations 4 and 5) are met satisfactorily.

Further approximations are possible. For example, if it holds (approximately) that $\text{Var}_0(Y|x) = \text{Var}_1(Y|x)$ for relevant values of x, then the optimal cutting score between the two treatments is the smallest value of x for which

$$
E_1(Y|x) - E_0(Y|x) > d_1 - d_0
$$

holds. Also, for linear regression lines $E_j(Y|x) = \alpha_j + \beta_j x$ and homoscedasticity, it follows that $\text{Var}_j(Y|x) = \text{Var}_j(Y(x))$. The optimal cutting score c^* is now equal to the smallest integer value larger than or equal to

$$
\frac{d_1 - \alpha_1)[\text{Var}_0(Y(x))]^{1/2} - (d_0 - \alpha_0)[\text{Var}_1(Y(x))]^{1/2}}{\beta_1[\text{Var}_0(Y(x))]^{1/2} - \beta_0[\text{Var}_1(Y(x))]^{1/2}}
$$

(13)

To calculate this quantity, only estimates of the regression parameters and the pooled variances of Y given $X = x$ are required.

Although the distributional assumptions in Equation 13 refer to the regression lines of criterion on predictor scores, this solution still does not coincide with the results of the traditional linear regression approach. The difference is the presence of the thresholds d_j and the pooled variances $\text{Var}_j(Y(x))$ in Equation 13. As soon as d_j and $\text{Var}_j(Y(x))$ are treatment-independent constants, Equation 13 reduces further to

$$
(\alpha_0 - \alpha_1)/(\beta_1 - \beta_0),
$$

(14)

which is the value of x for which the regression lines cross and on which treatment assignment in the traditional approach is based.

As an alternative to the assumptions leading to Equations 12–14, it is also
Classification Decisions

possible to model Equation 11 directly and assume, for instance, a normal or logistic distribution function as a model for the probabilities of failure as a function of x. If the choice is the logistic function, which, as is well-known, leads to results hardly discriminable from the normal but offers computational advantages, the analysis in Equation 11 boils down to logistic regression analyses for the two treatments, and the optimal cutting score is found as the value of x for which the logistic regression lines cross. If such values occur outside the range of test scores, there is a treatment dominating the others, and the assignment of all subjects to this treatment is the solution. Again, it must be checked if these logistic curves fit the data. If they do for a negative value of the slope parameter, then Equation 4 is automatically met; but it must always be checked separately if Equation 5 holds for the range of the data. The literature shows successful examples of fitting logistic and normal functions to test data. For example, Raju, Burke, Normand, and Dye (1984) followed logistic regression analysis for a selection problem. Although their problem had only one treatment, the fact that they found a good fit of the logistic model suggests a successful application of logistic regression analysis to classification data. An analysis comparable to the one by Raju et al., with the normal instead of the logistic distribution function, is given in Dagenais (1984).

An Empirical Example

The example in this section gives an empirical illustration of the problem of choosing an appropriate continuation school.

In The Netherlands, primary education ends at grade six and is followed by a complicated system of secondary education in which schools provide education from lower level vocational to university-track programs. It is required by law that the transition from primary to secondary education be partly based on empirical evidence about the pupil’s suitability obtained from, for instance, the administration of an achievement test or a psychological test battery. An achievement test popular for this purpose is the Eindtoets basisonderwijs, prepared annually by the Dutch National Institute of Educational Measurement (Cito). Periodically, Cito gathers flow data on pupils relating their test scores to what happened to them one year later. These data are only used to get an impression of the predictive validity of the test, and not as a basis for decision rules for school selection.

In the analyses reported here, data from a 1981 Cito study of a certain regional unit in The Netherlands were used to explore the possibility of establishing optimal rules for school selection using the theory of classification decisions with threshold utility. The logistic function was chosen as a model for the probability of success as a function of the achievement test score. A pupil who passed his or her first year and remained in the same type of school or left it for a higher level school was considered a success; all other cases were considered a failure. The following types of secondary education were selected as “treatments” in the analyses: Lower Vocational
TABLE 1

Empirical proportion of successes as a function of test scores for the three treatments

<table>
<thead>
<tr>
<th>Test score</th>
<th>LVE</th>
<th>LGE</th>
<th>MGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–5</td>
<td>0.897</td>
<td>0.575</td>
<td>0.571</td>
</tr>
<tr>
<td>6–10</td>
<td>0.929</td>
<td>0.619</td>
<td></td>
</tr>
<tr>
<td>11–15</td>
<td>0.947</td>
<td>0.760</td>
<td></td>
</tr>
<tr>
<td>16–20</td>
<td>0.948</td>
<td>0.840</td>
<td>0.788</td>
</tr>
<tr>
<td>21–25</td>
<td>0.952</td>
<td>0.890</td>
<td>0.860</td>
</tr>
<tr>
<td>26–30</td>
<td>0.959</td>
<td>0.930</td>
<td>0.920</td>
</tr>
<tr>
<td>31–35</td>
<td>0.972</td>
<td>0.960</td>
<td>0.960</td>
</tr>
<tr>
<td>36–40</td>
<td>0.979</td>
<td>0.960</td>
<td>0.988</td>
</tr>
<tr>
<td>41–45</td>
<td></td>
<td>2298</td>
<td></td>
</tr>
<tr>
<td>46–50</td>
<td></td>
<td>2298</td>
<td></td>
</tr>
</tbody>
</table>

No. of cases: 1333, 15926, 2298
Slope: 0.031, 0.095, 0.099
Intercept: 2.2, −0.8, −1.0
Model fit: 0.641, 0.071, 0.105

Education (LVE), Lower General Education (LGE), and Middle General Education (MGE). Table 1 gives the empirical proportions of successes and the number of cases for each treatment. Since only grouped data were available, logit analysis of the proportions was applied for the middle of the test score intervals reported in Table 1. Some of the data in the outermost intervals had to be pooled to bring the number of cases to a level acceptable for a likelihood ratio goodness-of-fit test. The bottom line of Table 1 reports the probabilities of exceeding the chi-square values and shows that the logit model had a satisfactory fit to the data. Table 1 also gives the slopes and intercepts of the logistic regression lines for each treatment. The numbers of cases in Table 1 justify the large-sample approach adopted in this illustration. The empirical proportions of success in Table 1 suggest that the monotonicity conditions in Equations 4 and 5 also hold for the range of individual test scores in the population. As is clear from Figure 1 below, the condition in Equation 4 is met. For LVE/LGE, the condition in Equation 5 applies for the whole range of test scores. The same holds for LGE/MGE, with a minor exception at the lower end of the range of test scores (x ≤ 4), where the difference in Equation 5 decreases instead of increases.

In the following analyses it was first assumed that the utilities were the same for each treatment, and then the effects of deviations from the equal-
Classification Decisions

Ities $w_j - v_j = w_{j-1} - v_{j-1}$ and $w_j = w_{j-1}$ on the behavior of the optimal cutting scores were studied. If the utilities are the same for each treatment, the solution is given by Equation 11 and is found as the smallest value of x not to the left of the point at which the logistic regression lines cross. Figure 1 shows the regression lines for each type of program in the example. It appears that the optimal point for deciding between LVE and LGE is $x = 47$ (the lines cross at $x = 46.9$), whereas the same point for LGE and MGE falls at the border of the range of test scores (the lines cross slightly over $x = 50$, implying that for a longer test the cutting score would be at $x = 51$). The general impression from this result is that for almost all possible test scores the choice of LVE is optimal; only for very high test scores does the choice of LGE appear to be best.

The most conspicuous aspect of Figure 1, however, is the near coincidence of the lines for LGE and MGE. Although LGE is a better choice for the whole range of test scores, it hardly dominates MGE. On the other hand, there is much difference between these two general types of educa-

FIGURE 1. Logistic regression lines for the three treatments
TABLE 2
Optimal cutting scores between the treatments as a function of the utility ratio

<table>
<thead>
<tr>
<th>Utility ratio</th>
<th>Optimal cutting score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LVE/LGE</td>
</tr>
<tr>
<td>1.00</td>
<td>47</td>
</tr>
<tr>
<td>1.05</td>
<td>48</td>
</tr>
<tr>
<td>1.10</td>
<td>49</td>
</tr>
<tr>
<td>1.15</td>
<td>50</td>
</tr>
<tr>
<td>1.20</td>
<td>50</td>
</tr>
<tr>
<td>1.25</td>
<td>LVE</td>
</tr>
</tbody>
</table>

Note. Utility ratio is defined as \((w_j - v_j)(w_{j-1} - v_{j-1})^{-1}\). It is assumed that \(w_j = w_{j-1}\).

Name of treatment indicates optimal choice for all test scores (cutting score outside range of test scores).

Note that in Table 2 it is still assumed that \(w_j - w_{j-1} = 0\). The opposite case, in which \(w_j - w_{j-1}\) deviates from zero but \(w_j - v_j = 1\), is presented in Table 3. It appears that, because the regression lines practically coincide, the optimal cutting score between LGE and MGE shows an all-or-none behavior. For the values of \(w_j - w_{j-1}\) in Table 3 larger than 0.00, MGE is the optimal choice for all test scores, whereas for the smaller values of \(w_j - w_{j-1}\) the optimal choice is LGE. The optimal cutting score between LVE and LGE varies more regularly as a function of \(w_j - w_{j-1}\). It should be noted that the optimal cutting score between LVE and LGE decreases in \(w_j - w_{j-1}\). This is attributable to the assumptions underlying Table 3. As \(w_j - v_j = 1\), an increase in \(w_j\) relative to \(w_{j-1}\) also implies a relative increase of \(v_j\). Thus, treatment \(j\) becomes increasingly attractive compared to \(j - 1\), and the optimal cutting score decreases. Table 3 shows that on the whole the optimal cutting score is more sensitive to changes in the neighborhood of \(w_j - w_{j-1} = 0\) than for larger values of \(w_j\) relative to \(w_{j-1}\). This is a favorable result because among students and parents, a LGE diploma is generally more appreciated than a LVE diploma.
TABLE 3

Optimal cutting scores between the treatments as a function of \(w_j - w_{j-1} \)

<table>
<thead>
<tr>
<th>(w_j - w_{j-1})</th>
<th>LVE/LGE</th>
<th>LGE/MGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.10</td>
<td>LVE</td>
<td>LGE</td>
</tr>
<tr>
<td>0.00</td>
<td>47</td>
<td>LGE</td>
</tr>
<tr>
<td>0.10</td>
<td>28</td>
<td>MGE</td>
</tr>
<tr>
<td>0.20</td>
<td>20</td>
<td>MGE</td>
</tr>
<tr>
<td>0.30</td>
<td>15</td>
<td>MGE</td>
</tr>
<tr>
<td>0.40</td>
<td>10</td>
<td>MGE</td>
</tr>
<tr>
<td>0.50</td>
<td>5</td>
<td>MGE</td>
</tr>
<tr>
<td>0.60</td>
<td>LGE</td>
<td>MGE</td>
</tr>
</tbody>
</table>

Note. It is assumed that \(w_j - v_j = w_{j-1} - v_{j-1} = 1 \). Name of treatment indicates optimal choice for all test scores (cutting score outside range of test scores).

No doubt the most important result from this empirical example is that the choice between LGE and MGE is mainly a matter of subtle differences in utilities. In the relevant range of test scores, differences between the probabilities of success are hardly discernible. These findings seem to lend support to the belief held by some in The Netherlands that the differences between these two types of general education are too small to justify their separate existences.

Concluding Remarks

Two further comments are necessary. First, it is noted that the decisionmaker’s task of specifying his or her utility parameter values, usually a delicate matter, is a somewhat simpler one in the present case of a threshold utility function. The decisionmaker only needs to provide values for the parameters \(w_j \) and \(v_j \). In practical applications, this task can easily be performed using a lottery method well-known in this area (e.g., Luce & Raiffa, 1957, chap. 2) or via direct scaling of preferences (Vrijhof, Mellenbergh, & van den Brink, 1983). If it is believed that the final exam is not the ultimate criterion but that this lies in its civil effects, psychological well being, and so on, Keeney and Raiffa’s handling of proxy attributes may be useful (Keeney & Raiffa, 1976, sect. 2.5). The robustness analyses in Tables 2–3, however, show that the optimal cutting scores may be sensitive to changes in the utility parameters for some ranges of possible values. Therefore, care should be taken when specifying their values.

The foregoing also showed the conditions under which the Bayesian approach yields the same solution as the linear-regression approach. The linear-regression solution can be conceived of as a Bayes rule under
threshold utility (Equation 2) with equal parameter values for all treatments, homoscedasticity of the variances of Y given $X = x$ for all treatments, and equality of these conditional variances across all treatments. It seems unlikely that these restrictions will often be met in practice.

The purpose of this paper was to give the reader the flavor of such differences between the traditional linear regression and a Bayesian approach to the classification problem.

References

Author

WIM J. VAN DER LINDEN, Professor, Department of Education, Twente University of Technology, P.O. Box 217, 7500 EA Enschede, The Netherlands. Degrees: BS, MS, University of Utrecht; PhD, University of Amsterdam. Specializations: psychometric methods, data analysis, research methodology.