Gain Anisotropy of the Optically Pumped Continuous Wave CF₄ Laser

M. Hartemink and H. P. Godfried

Abstract—Gain anisotropy in an optically pumped continuous wave (CW) CF₄ laser was measured for the P'(31) emission line at 16.3 μm through a study of threshold pump powers with a continuous wave CO₂ laser, emitting at 9.3 μm. Pumping the CF₄ off line center, the gain for forward and backward traveling waves occurs at different frequencies. The frequency difference was determined using the longitudinal mode spacing of the CF₄ laser and was related to the measured pump frequency offset from absorption line center. The difference in gain between radiation emitted co-propagating and counter-propagating with the pump beam was for the first time determined quantitatively and results agreed with theoretical predictions. The occurrence of gain anisotropy is final, conclusive evidence that the lasing transition of CF₄ at 16.3 μm is directly pumped by the absorbing transition.

INTRODUCTION

The CF₄ laser is an example of an optically pumped three level laser where pumping and lasing transitions are coupled by a common upper level. Because of this coupling, double quantum processes (e.g., simultaneous absorption of a pump photon and emission of a 16 μm photon) occur and when at least one of the transitions involved shows some degree of Doppler broadening, these Raman processes can give rise to gain anisotropy between forward and backward emitted radiation. A theoretical description of a three level system with transitions from two of the levels to a common third level and a calculation of the resulting line shapes was already given in 1957 [1]. A more detailed and general analysis was published in 1969 [2]. This was extended to the case of high intensity pumping of one of the transitions in 1972 [3].

The semiquantum mechanical calculations are rather lengthy. However, a quick understanding of what causes the gain anisotropy may be obtained by considering the Doppler broadened line shape for the resonant Raman process is used, with a large pump detuning so that the lasing transition of CF₄ is at 16.3 μm directly pumped by the absorbing transition.

Gain anisotropy was reported in HF gas [4], optically pumped by a pulsed HF laser, by comparing the intensities in forward and backward direction. Measurements of the gain of a far-infrared laser [5] also gave a qualitative verification. But the observed anisotropy was small since the 70.5 μm emission line was optically pumped by a CO₂ laser at 9.7 μm and the theoretical gain anisotropy, given by $\frac{1 + \lambda_p}{\lambda_f}$, is only of order 10%. Recently, gain anisotropy of the NH₃ laser was reported [6], [7] but again only a qualitative explanation was given. Anyway in a normal mode of operation of the NH₃ laser the two photon Raman process is used, with a large pump detuning so that only the forward wave with the highest gain occurs.

In a superfluorescence study of CF₄ using a pulse laser [8], different pulseshapes for co- and counter-propagating emitted radiation were observed in the time domain but the difference was not explained. Although experiments with an optically pumped CW CF₄ laser were reported in 1983 [9], unidirectionally pumped in a multipass cell configuration, gain anisotropy between forward and backward emitted radiation went unnoticed. In the current experiments, where the CF₄ gas was pumped off line center, co- and counter-propagating emission could be observed at different CF₄ cavity tuning settings. This enabled independent measurements of the gain in both cases and consequently of the gain anisotropy.

In the next section we first apply the results of [1]–[3] to the case of off-resonance pumping in CF₄ and the difference in gain for the two directions will be discussed. Then we will describe the experimental setup (Section III) and in Section IV we will present measurements of frequency difference, gain anisotropy ratio, and compare these data to the theory given earlier.

THEORY

In many optically pumped gas lasers, the absorbing and lasing transition share a common level. In the case of the CF₄ laser (Fig. 1) the $R'(29)$ A'_2 + E' + F' transition is pumped which connects the $J = 29$ rotational level of the ground state to a sublevel of the $+ -$ Coriolis branch of the $J = 30$ rotational state in the $\nu_2 + \nu_3$ combination band. Emission at frequency ν_e takes place from this common upper level down to the rotational level of the singly excited ν_3 vibrational state and is commonly assumed to be the $P'(31)$ transition. In addition to the common ab-
absorption followed by stimulated emission transitions Raman-type transitions between the ground state and v_2 level can take place. For a $S_{v}(29)$ transition this results in a scattered photon whose frequency is within the gain bandwidth of the CF$_4$ laser.

For a theoretical description of this three level system, we follow the model given by [2] and which was also used by Seligson et al. [5]. We designate ground, intermediate, and final levels of the three level system with symbols g, i, and f, respectively. The pump transition with center frequency v_{gi} is pumped at frequency v_{gl}, emission takes place at frequency v_{lf}. Emission line center is at frequency $v_{lf,0}$. In the model the pump field E_{gi} can be of arbitrary strength but the emitted field E_{lf} is assumed to be weak. Relaxation rates for population decay ($\gamma_g, \gamma_i, \gamma_f$), polarization decay ($\gamma_{gi}, \gamma_{lf}$), and Raman coherence decay (γ_{gf}) are all included in the theory, with the subscripts indicating the levels involved. Another important quantity is the normalized velocity distribution function $W(v)$, with v the velocity component in the propagation direction of the pump field:

$$W(v) = \sqrt{\frac{M}{2\pi kT}} \exp \left(-\frac{Mv^2}{2kT} \right).$$

This is the usual distribution for molecules of mass M at a temperature T, with k the Boltzmann constant. With the assumption that in the absence of the pump field all molecules are in the ground state, and in the presence of a pump field E_{gi} at frequency v_{gi}, the gain at the emission frequency v_{lf} is given by [5]

$$G(v_{gf}) = G_0 \beta^2 \text{Im} \gamma_{gf} \int L_{gf} - 2R \frac{\gamma_{gf}}{A} \frac{\gamma_{lf}}{B} W(v) \, dv \quad (1)$$

where

$$G_0 = \frac{8\pi^2 v_{gf,0} \mu_{gf}^2 N}{c \hbar}$$

$$\beta = \frac{\mu_{gf} E_{gi}}{2\hbar}$$

$$R = (\Delta_{gf} - \Delta_{gf}') - i\gamma_{gf}$$

$$A = |L_{gf}|^2 + 4\beta^2 \gamma_{gf}^2 / \gamma_i \gamma_f.$$
The pump beam was mode matched to the 16 μm cavity using two lenses. It should be noted that plane parallel plates [12] and the two KBr prisms introduced astigmatism in the pump beam which easily amounted to differences of 10% in the beam waist size in horizontal and vertical direction so that, without compensation, the pump beam shape is always a compromise. Pump beam and generated output beam were aligned to travel colinearly to maximize conversion efficiency. KBr prisms were needed to separate pump and output beams. In this configuration, reflections from the mirrors back to the pump laser seriously degraded the stability of the pump laser frequency. To overcome this problem a λ/4 plate in conjunction with two Ge Brewster plates was used to minimize optical feedback. The λ/4 plate not only ensured a stable pump laser frequency but is also predicted to increase the small-signal gain of the laser by a factor of 1.5 [13].

The CF4 laser chamber could be cooled with cold nitrogen gas. Both ends of the cell were kept at room temperature, the cooled section was approximately 210 cm long. Temperatures were monitored using 3 Pt resistors near the wall of the cell. They showed a residual temperature difference of approximately 20 K along the cells cold section.

When the homogeneous linewidth and the frequency difference \(\nu^+ - \nu^- \) are much smaller than the longitudinal mode spacing of the laser, it is possible to study the gain for co- and counter-propagating waves by tuning the cavity length in resonance with either of these waves.

EXPERIMENTAL SETUP

A schematic of the experimental setup is shown in Fig. 2. A sealed-off CW CO2 laser, tuned to the 9R(12) emission line, was used to pump the CF4. The CO2 laser cavity was formed by an 80% reflectivity concave mirror, with a radius of curvature of 3 m and a grating (150 L/mm) mounted in a littrow configuration to line tune the laser. The grating was mounted on a piezo transducer to allow length tuning of the CO2 laser. An opticooacoustic cell was used to lock the CO2 laser to the CF4 absorption line which is shifted 31 MHz to the blue side of the 9R(12) line center [11]. We could also sweep the frequency with the piezo to tune the laser through the absorption maximum. Frequency was calibrated against the drive voltage using the longitudinal mode spacing \(c/2l = 95 \text{ MHz} \) of the CO2 laser. Nonlinearities in the piezo gave errors of less than 5% in the frequency determination.

The 278 cm long CF4 laser cavity consisted of two dichroic mirrors, with an 98% reflectivity at 16 μm while transmitting 80% of the pump radiation. Their radius of curvature was 3 m. The CF4 cavity was stabilized with Invar bars and could be tuned piezoelectrically. We note that the longitudinal mode spacing \(c/2l = 54 \text{ MHz} \) is much larger than the velocity selected homogeneous emission linewidth (≈ 1 MHz).

The pump beam was mode matched to the 16 μm cavity using two lenses. It should be noted that plane parallel plates [12] and the two KBr prisms introduced astigmatism in the pump beam which easily amounted to differences of 10% in the beam waist size in horizontal and vertical direction so that, without compensation, the pump beam shape is always a compromise. Pump beam and generated output beam were aligned to travel colinearly to maximize conversion efficiency. KBr prisms were needed to separate pump and output beams. In this configuration, reflections from the mirrors back to the pump laser seriously degraded the stability of the pump laser frequency. To overcome this problem a λ/4 plate in conjunction with two Ge Brewster plates was used to minimize optical feedback. The λ/4 plate not only ensured a stable pump laser frequency but is also predicted to increase the small-signal gain of the laser by a factor of 1.5 [13].

The CF4 laser chamber could be cooled with cold nitrogen gas. Both ends of the cell were kept at room temperature, the cooled section was approximately 210 cm long. Temperatures were monitored using 3 Pt resistors near the wall of the cell. They showed a residual temperature difference of approximately 20 K along the cells cold section.

The pump beam was mode matched to the 16 μm cavity using two lenses. It should be noted that plane parallel plates [12] and the two KBr prisms introduced astigmatism in the pump beam which easily amounted to differences of 10% in the beam waist size in horizontal and vertical direction so that, without compensation, the pump beam shape is always a compromise. Pump beam and generated output beam were aligned to travel colinearly to maximize conversion efficiency. KBr prisms were needed to separate pump and output beams. In this configuration, reflections from the mirrors back to the pump laser seriously degraded the stability of the pump laser frequency. To overcome this problem a λ/4 plate in conjunction with two Ge Brewster plates was used to minimize optical feedback. The λ/4 plate not only ensured a stable pump laser frequency but is also predicted to increase the small-signal gain of the laser by a factor of 1.5 [13].

The CF4 laser chamber could be cooled with cold nitrogen gas. Both ends of the cell were kept at room temperature, the cooled section was approximately 210 cm long. Temperatures were monitored using 3 Pt resistors near the wall of the cell. They showed a residual temperature difference of approximately 20 K along the cells cold section.
The 16 μm radiation was monitored with a HgCdTe detector. Light levels were adjusted using a silicon absorption filter to avoid saturation of the detector and clipping of the amplifier. The CO2 laser pump power was monitored in the beam behind lens L2 with a power meter which was removed during output power measurements of the CF4 laser. A plane parallel Ge or ZnSe plate was used to vary the pump power. The plate, which acted as a Fabry–Perot, could be rotated. In the case of ZnSe a maximum of 50% attenuation was obtained while for Ge maximum attenuation was 75%.

RESULTS

First, we determined the pump-offset from absorption line center. In a previous experiment the frequency shift of the CF4 absorption line center to the CO2 emission line center was found to be 31 MHz [11]. Calculations on the basis of the emission linewidth of the CO2 laser and the absorption linewidth of the CF4 gas in the optoacoustic cell, multiplying pump power and absorption, show that maximum power deposition occurs at 25 MHz from CO2 emission line center. The underlying assumption of the multiplication is that absorption in the optoacoustic cell α is small compared to unity. Using the CO2 laser longitudinal mode spacing to calibrate the frequency shift we found that maximum optoacoustic signal occurred at 26 ± 1 MHz from CO2 emission line center. Consequently the pump-offset is given by Δνp = 5 MHz.

When slowly scanning the CF4 cavity length we observe output peaks as shown in Fig. 3. The repetition of the pattern reflects the 16 μm cavity longitudinal mode spacing while the smaller and larger peaks are associated with backward and forward emitted radiation. If we use the CF4 cavity longitudinal mode spacing to calibrate the frequency we get for the frequency difference between co-propagating and counter-propagating waves:

$$\nu^+ - \nu^- = 6 \pm 1 \text{ MHz}.$$

In view of (8) this value is in good agreement with the measured pump-offset. The width of the output peaks were of the order of 1 MHz. The current agreement between these measurements provides an independent confirmation for the value of the shift between CF4 absorption linecenter and CO2 emission line center reported earlier [11].

Both for the higher peaks (forward emission) and the smaller output peaks (backward emission) we measured the CW 16 μm output as a function of CO2 pump power. The output showed the expected linear dependence on the
pump power [10]. Also no splitting was observed, indicating the absence of an Stark splitting at these power levels. We measured the pump power dependence of the output at pressures of 4.0 Pa and 6.7 Pa, at different temperatures. As an example, the results are shown for a pressure of 4.0 Pa at 126 K (Fig. 4). The quality of the data and of the fits at other temperatures and pressures is very similar. The data were fitted using a least squares method and the threshold pump powers determined (Table I). We see that threshold pump powers increase as a function of pressure and temperature. These dependencies will be discussed in a separate publication [14].

Averaging the threshold pump power ratio's given in Table I we conclude that the threshold pump power ratio for forward P_{th}^F and backward traveling radiation P_{th}^B is given by

$$R = \frac{P_{th}^B}{P_{th}^F} = 1.5 \pm 0.1.$$

As discussed earlier the pump threshold ratio for co-propagating and counter-propagating waves equals the linewidth ratio which according to theoretical predictions is $R = 1 + \nu_{th,2}/\nu_{th,0} = 1.57$. This theoretical value is confirmed within error by our measurements of the threshold pump powers.

Although strong indications were found earlier [15] that the emitting transition in CF$_4$ is the $P''(31)$ transition, the current experiment, in which the occurrence of gain anisotropy was demonstrated and the theoretical predictions were quantitatively confirmed, provides final, conclusive evidence that this transition is indeed involved. For any other transition where gain is obtained via indirect pumpings of the laser upper level the absence of Raman terms would imply the absence of gain anisotropy.

With this result we have shown that the theory given by Feld and Javan [2] not only gives a qualitative but also an accurate quantitative prediction of the gain anisotropy effect. It is important to realize that the linewidth differences between backward and forward emitted radiation will remain even when the absorbing transition is pumped on-resonance. Consequently, the total gain will then be the addition of the gain in the forward and backward direction [3] in sharp contrast to rate equations model predictions. In all optically pumped lasers with a common upper level double quantum transitions play an important role. Only in the limiting case that $\nu_{th,2}/\nu_{th,0} = 0$ the gain ratio $R \rightarrow 1$ and the laser can be described by a rate equations model. In all other cases Raman effects on linewidth and line shape have to be taken into account.

SUMMARY

We have shown that gain anisotropy in optically pumped lasers for forward and backward emitted radiation can be determined by pump threshold measurements. For the first time the ratio of forward and backward gain, the gain anisotropy ratio, R has been measured. For the CW CF$_4$ laser we measured $R = 1.5 \pm 0.1$ which agrees within error with the theoretical prediction $R = 1.57$. The demonstration of gain anisotropy in the CF$_4$ laser provides conclusive evidence that the lasing transition is directly pumped by the absorbing transition.

REFERENCES

M. Hartemink, photograph and biography not available at the time of publication.

H. P. Godfried, photograph and biography not available at the time of publication.