Urban Population grew from 1990 to 2010, grew more in developing countries, but much of this growth is in slum areas in Sub-Saharan Africa. There, more than 70% of urban population leaves in urban slums with all the environmental, social and economic structural and cumulative problems that the process represents. The problem is that more public investment in urban slums increases even more the attractiveness of urban areas leading to a cumulative effects of urban growth stimulated by the unchallenged idea that rural populations are poor and can be better off if concentrated in major towns with increased accessibility to public services, furthermore reducing the pressure of poor population on natural resources (farm land, mining fields, hydropower facilities) that then can be available for modern uses. This paper tries to understand the phenomena using a rural/urban migration model that relates migration flows with the regional differences in ratio formal/economy. Formal economy is the one that can be explained by the basic activities. Informal economy is associated with the population that is not involved in the formal economy. The model is calibrated for the various municipalities, rural and urban, of the Province of Huambo in Angola with an external area in Luanda, the capital of the country. We show that different spatial allocations of public spending can lead to different migration flows and urban patterns.

[136] VALUING LOCAL PUBLIC AMENITIES IN SEGREGATED NEIGHBOURHOODS
Kristin Aarland¹, Liv Osland² and Inge Thorsen²
¹Norwegian social research (NOVA), Norway; ²Stord/Haugesund University College, Norway

Norway is considered to be a very egalitarian society. However, within the capital Oslo there still exist large discrepancies across neighborhoods in terms of well-being and living conditions. Groruddalen is a large, suburban area located to the northeast of the city center. It is characterized by lower levels of education and income and higher levels of poverty, unemployment and social benefit take-up than other parts of Oslo. Moreover, the share of minority households is high, as is the number of minority students in the local schools, which has caused some concern for ‘white flight’. Starting in 2007, the area of Groruddalen has been subject to a large, publicly funded, intervention. Over a ten year period a total of one billion NOK will be spent on improving living conditions and making the area more attractive to both its current residents and potential newcomers. The amenities provided range from heavily subsidized child care and cultural events to physical improvements like parks, playgrounds and bike paths. In this paper we investigate whether the program has had any effect on the evolution of local house prices. Using market based individual house price data from the period 2000-2011 we compare house prices in four neighborhoods that have been targeted for more intensive intervention to that of the remaining program neighborhoods in Groruddalen. Moreover, we contrast the house prices of Groruddalen with those of another area in Oslo that has not been subject to the same intervention but that is comparable along socioeconomic and cultural dimensions. This paper will add to the empirical literature on whether local public amenities are valued by home buyers and reflected in the house prices.

[83] RURAL DEPOPULATION, LABOUR MARKET ACCESSIBILITY, AND HOUSING PRICES
Liv Osland¹, Inge Thorsen¹ and Jan Uboe²
¹Stord/Haugesund University College, Norway; ²University of Oslo, Norway

A process of rural depopulation may be initiated by relocations or closures of basic sector firms. Reduced basic sector employment can be expected to cause out-migration from the region, leading to an economic base multiplier process, where jobs follow people and people follow jobs, until a new equilibrium situation is reached, with a lower level of local employment and population. In addition, the out-migration can be enforced by interdependent migration decisions. The probability of migrating from a zone may increase if the population falls below some critical level, since depopulation may lead to the loss of amenities such as schools, shops etc. Housing market effects can be expected to pull in the opposite direction. A reduction in local employment reduces the labour market accessibility. This may reduce local housing prices, and cause a capital loss for households that are moving out of the area. In this paper, we consider the relationship between housing prices, labour market accessibility, and migration flows in a general spatial equilibrium model. Equilibrium results from an iterative process where changes in the spatial employment pattern affect housing prices, while changes in housing prices affect migration decisions and local sector employment. The model is used to discuss how the housing market can contribute to preserving the spatial residential location pattern, and to protect an area from unfortunate effects of exogenous shocks in basic sector employment and/or in the transportation infrastructure network.

SS 5. C - Accessibility Modelling
ROOM VIII; Chair: John Östh

[2] DISCUSSING THE LOGSUM AS AN ACCESSIBILITY INDICATOR
Karst Geurs¹, Bert van Wee² and Piet Rietveld³
¹University of Twente, The Netherlands; ²Delft University of Technology, the Netherlands; ³VU University Amsterdam, The Netherlands

In recent years the so called Logsum as an accessibility measure increasingly received attention. The advantages of the logsum measure (LM) are discussed in literature, but to the best of our knowledge no systematic discussions on limitations exist. The fist aim of this paper is to fill this gap. Our second aim is to explicitly compare the LM with its main competitor: the gravity measure, or potential accessibility measure. Limitations of the logsum include, amongst others, the ignorance of option values and the related love for variation in consumption, limitations related to the willingness to pay, the fact that
the utility at the choice moment may differ from the utility of the choice option itself, limitations related to the marginal utility of income, the fact that the logsum relates to changes in accessibility, not the absolute level of accessibility, the fact that the logsum is a measure for the valuation of accessibility but not for accessibility itself, the fact that the indicator is difficult to communicate. Comparing the LM and gravity based measures we conclude that to go from the LM’ measure (that is very close to the gravity based GM measure) to a welfare measure, the logarithmic transformation has to be used in combination with the (1/α) standardization. This reflects the difference between accessibility and the utility of accessibility: an absolute change in accessibility measured according to the LM’ definition has a welfare impact that depends on the initial level of accessibility.

[105] ASSESSING THE IMPACT OF ADAPTIVE ACCESSIBILITY ON THE OPTIMAL TRANSPORT POLICY IMPLEMENTATION BY USING AN INTEGRATED LAND-USE/TRANSPORT MODEL FOR MADRID
Yang Wang, Andrés Monzón and Floridea Di Ciommo
Transyt, UPM, Spain

Accessibility is an essential concept widely used to evaluate the impact of land-use and transport strategies in transport and urban planning. Accessibility is typically evaluated by using a transport model or a land-use model independently or successively without a feedback loop, thus neglecting the interaction effects between the two systems and the induced competition effects among opportunities due to accessibility improvements. More than a mere methodological curiosity, failure to account for land-use/transport interactions and the competition effect may result in large underestimation of the policy effects. With the recent development of land-use and transport interaction (LUTI) models, there is a growing interest in using these models to adequately measure accessibility and evaluate its impact. The current study joins this research stream by embedding an accessibility measure in a LUTI model with two main aims. The first aim is to account for adaptive accessibility, namely the adjustment of the potential accessibility due to the effect of competition among opportunities (e.g., workplaces) as a result of improved accessibility. LUTI models are particularly suitable for assessing adaptive accessibility because the competition factor is a function of the number of jobs, which is related to land-use attractiveness and the number of workers which is related, among other factors, to the transport demand. The second aim is to identify the optimal implementation scenario of policy measures on the basis of the potential and adaptive accessibility and analyse the results in terms of social welfare and accessibility. The metropolitan area of Madrid is used as a case-study and two transport policy instruments, namely a cordon toll and bus frequency increase, have been chosen for the simulation study in order to present the usefulness of the approach to urban planners and policy makers. The MARS model (Metropolitan Activity Relocation Simulator) calibrated for Madrid was employed as the analysis tool. The impact of accessibility is embedded in the model through a social welfare function that includes not only costs and benefits to both road users and transport operators, but also costs and benefits for the government and society in general (external costs). An optimisation procedure is performed by the MARS model for maximizing the value of objective function in order to find the best (optimal) policy implementations intensity (i.e., price, frequency). Last, the two policy strategies are evaluated in terms of their accessibility. Results show that the accessibility with competition factor influences the optimal policy implementation level and also generates different results in terms of social welfare. In addition, mapping the difference between the potential and the adaptive accessibility indicators shows that the main changes occur in areas where there is a strong competition among land-use opportunities.

[85] INTERNAL TRAVEL TIME MEASURES: EXPLORING ICT DATA
Ana Margarida Condeço Melhorado, Elena Navajas Cawood and Panayotis Christidis
Institute for Prospective Technological Studies, Spain

Accessibility is at the heart of the European Union (EU) policy. The EU underlines the importance of building trans-European transport networks (TEN-T) as a political tool for improving accessibility throughout the whole of Europe, and very particularly in border and peripheral regions hampered by a lack of access to the central markets. Equitable accessibility to markets is considered a factor which is crucial to the success of the social and economic integration of the EU and to the achievement of harmonious economic development. The Green Paper on TEN-T explicitly states that the main objectives of the TEN-T are to guarantee the adequate functioning of the interior market and to guarantee accessibility and reinforce socio-economic and territorial cohesion. Measuring accessibility at a European scale is not an easy task. Data is not always available for all countries and a data requirement limits the use of more disaggregated accessibility indicators. On the other hand there is a growing potential of ICTs (Information and communication technologies) in providing new sources of data that can be used in accessibility computation and to the improvement of accessibility analysis performed at a European scale. In this study we will use TeleAtlas and TomTom data to calculate internal travel times for NUTS-3 regions in the EU. These internal travel times are estimated according to the level of congestion within each region as well as with its’ total area. Internal travel times are an important aspect in accessibility indicators, especially those with a gravity formulation, because they allow the estimation of what is known as self-potential. The self-potential can be defined as the contribution of the internal accessibility of each zone to its overall accessibility. Several studies demonstrate the important role of this factor on accessibility outcomes, especially in the most urbanized regions where the higher agglomeration of economic activities leads to a higher contribution of internal accessibility. It is precisely in urban regions where internal travel times are more difficult to estimate because of congestion. Congestion levels may be influenced by factors such as urban density, urban morphology, network infrastructure, cultural differences in the use of transport modes, etc. Accessibility analysis usually use crude estimates of internal distances, generally based on the regions’ area and in some