Long-Term Clinical Outcomes For Primary Angioplasty with Resolute Zotarolimus Eluting Stent in ST-Segment Elevation Acute Myocardial Infarction

Carlo Di Mario1, Stefano Windecker2
1Imperial College London, London, United Kingdom, 2Bern University Hospital, Bern, Switzerland

Background: Historically bare metal stents were considered standard of care for ST-segment elevation acute myocardial infarction (STEMI). There is limited data on STEMI patients treated for primary angioplasty with ResoluteTM zotarolimus-eluting stent (R-ZES) and the everolimus-eluting stent (EES).

Methods: The global RESOLUTE program enrolled STEMI patients in 4 trials: RESOLUTE-All Comers (RAC), RESOLUTE International, RESOLUTE China, and RESOLUTE China Registry. The multicenter R-AC trial randomized patients to R-ZES vs. EES. STEMI was a prespecified subset analysis. Target Lesion Failure (TLF) was defined as a composite of death from cardiac causes (CD), target vessel myocardial infarction (TV-MI), and target lesion revascularization (TLR). Stent thrombosis (ST) was defined as ARC definite/probable ST.

Results: Among 7618 patients who received R-ZES in the pooled RESOLUTE clinical program, 854 had STEMI. Mean age was 59±12 years, 81% of patients were men, 23% had diabetes mellitus, and patients had on average 1.4±0.7 lesions treated. The 4-year Kaplan-Meier incidence of TLF was 11.5%, TLR 4.8%, CD/TV-MI 8.2%, CD 5.5%, TV-MI 2.7%, and ST 1.9%. Among the 2292 patients randomized in R-AC, 122 STEMI patients were treated with R-ZES and 158 with EES. There were no significant differences at 5 years in TLF, TLR, CD, TV-MI, or ST, but there was a significant reduction in all cause death / TV-MI with R-ZES (5.1% vs 9.0%, p=0.036) (Table). Conclusion: A pooled analysis of complex STEMI patients treated with R-ZES found R-ZES to be associated with excellent and sustained clinical outcomes. Additionally, long-term outcomes with R-ZES in STEMI patients were numerically lower than or similar to EES; however, R-ZES had a significant reduction in all cause death / TV-MI as compared to EES at 5 years. Submitted on behalf of the RESOLUTE Global Clinical Program.

TCT-26

Comparison of everolimus-eluting and paclitaxel-eluting coronary stents in patients undergoing primary percutaneous coronary intervention: 5 year follow-up from the COMPARE I trial

Georgios J. Vlachojannis1, Rees-Jan Royaards2, Marielle A. Koper3, Adriaan O. Kraaijveeld4, Bianca M Bosma-de Klerk5, Jochem Wassing6, Martin van der Ent7, Pieter C. Smits8
1Maasstad Hospital, Rotterdam, Netherlands, 2Maassstad Hospital Rotterdam, Rotterdam, Netherlands

Background: Long-term all-comers data of the current generation everolimus-eluting stent (XienceV™, Abbott Vascular, Santa Clara, CA, USA) compared to the first generation paclitaxel-eluting stent (Taxus™ Liberté, Boston Scientific, Natick, MA, USA; PES) in patients undergoing primary percutaneous coronary intervention (PCI) for ST-elevating myocardial infarction (STEMI) are scarce.

Methods: The COMPARE I program was a prospective, randomized, single-center, all-comers trial randomly allocating patients to receive either EES or PES (1:1). It is to date the only randomized trial comparing EES to PES in a true all-comers population with an independent adjudicated 5-year follow-up. We performed a post-hoc sub-analysis in patients treated with primary PCI. The pre-specified endpoint was major adverse cardiovascular events (MACE) defined as the composite of the safety endpoints death or myocardial infarction (MI) and the efficacy endpoint target vessel revascularization (TVR).

Results: Of the 1800 study patients, 432 patients underwent primary PCI for STEMI (25.1%) of whom 240 were treated with EES and 212 with PES. At 5 years EES was superior to the PES with a significant lower incidence of the endpoints MACE and TVR. Moreover, EES showed a trend for reduction in MI and target lesion revascularization. No significant differences were found in rates of death and definite/probable stent thrombosis. The 5 year outcomes are tabulated.

<table>
<thead>
<tr>
<th>Events at 5 years</th>
<th>EES (n=240)</th>
<th>PES (n=212)</th>
<th>Relative Risk (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>6.7% (16)</td>
<td>8.5% (18)</td>
<td>0.79 [0.41-1.50]</td>
<td>0.46</td>
</tr>
<tr>
<td>Myocardial Infarction</td>
<td>6.7% (16)</td>
<td>10.3% (23)</td>
<td>0.61 [0.33-1.13]</td>
<td>0.11</td>
</tr>
<tr>
<td>Target Vessel Revascularization</td>
<td>5.8% (14)</td>
<td>11.3% (24)</td>
<td>0.51 [0.27-0.97]</td>
<td>0.04</td>
</tr>
<tr>
<td>Target Lesion Revascularization</td>
<td>5.4% (13)</td>
<td>9.4% (20)</td>
<td>0.57 [0.29-1.12]</td>
<td>0.10</td>
</tr>
<tr>
<td>Def./Prob. Stent Thrombosis</td>
<td>3.8% (9)</td>
<td>4.7% (10)</td>
<td>0.80 [0.33-1.92]</td>
<td>0.61</td>
</tr>
<tr>
<td>MACE (Primary Endpoint)</td>
<td>14.6% (35)</td>
<td>23.1% (49)</td>
<td>0.63 [0.42-0.93]</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Conclusions: At 5-years EES reduced significantly MACE in patients treated with primary PCI for STEMI compared to PES which was mainly driven by lower rates of TVR.

TCT-27

Comparison of Novel Zotarolimus-Eluting Cobalt-Chromium Stents and Everolimus-Eluting Platinum-Chromium Stents in Patients of the Randomized DUTCH PEERS Trial Presenting with Acute Myocardial Infarction

Clemens von Birgelen1, Marije M. Lőwik1, Ming Kai Lam1, Hanim Seri2, Peter W. Duane3, Gillian A. Jessurun4, Melvaun Tjon Joe Gin5, Rutger Anthonio6, Frits H. de Man7, Raymond Houtzwaest7, Gerard C. Linssen8, Liefke van der Heijden9, Kenneth Tandjung10, Carine J. Doggen10, Gert van Houwelingen2, Martin van der Ent1, Pieter C. Smits8
1Maasstad Hospital, Rotterdam, Netherlands, 2Maasstad Hospital Rotterdam, Rotterdam, Netherlands

Background: Biocompatible durable polymer coatings for drug-eluting stents (DES) were developed to reduce the risk of stent thrombosis, which is generally increased in the setting of acute myocardial infarction (MI). These coatings are used on novel, flexible, and highly deliverable third generation DES, investigated in the randomized, multicenter, all-comer DUTCH PEERS (TWENTE B) trial. Of the 1,118 eligible all-comer patients of DUTCH PEERS, 817 (45%) were treated in the setting of acute MI.

Methods: We assessed the one-year safety and efficacy of the Resolute Integrity zotarolimus-eluting stent (ZES) (Medtronic, Santa Rosa, CA, USA) and Promus Element everolimus-eluting stent (EES) (Boston Scientific, Natick, MA, USA) in 817 DUTCH PEERS patients who were treated for acute MI. One-year follow-up data of
all patients were obtained; adverse events were externally adjudicated by an independent committee. The primary endpoint was target vessel failure (TVF) at 1 year, a composite of cardiac death, target vessel related MI, and clinically indicated target vessel revascularization. Secondary endpoints included all the individual components of the primary endpoint, the incidence of stent thrombosis (ST), and the patient-oriented clinical endpoint (POCE).

Results: Patient and lesion characteristic did not differ between groups with the only exception being higher proportions of severely calcified lesions (87/548 (16%) vs. 108/500 (22%), p = 0.02) and stent postdilatation in EES (402/548 (73%) vs. 400/500 (80%), p = 0.01). At one year, TVF did not differ significantly between the two stent arms (6.4% vs. 6.8%, p = 0.50). In addition, POCE was different (8% vs. 12%) for ZES and 6% vs. 23% (EES) for PES (p = 0.03). Definite or probable ST rates were very low and similar in both groups (2/421 (0.5%) vs. 1/396 (0.3%), p = 0.10).

Conclusions: One-year follow-up of DUTCH PEERS patients, who were treated for acute MI, demonstrated excellent clinical results with a similar and sustained safety and efficacy of the Resolute Integrity ZES and the Promus Element EES.

TCT-28
Comparison Of Outcomes ForPrimary Percutaneous Coronary Intervention During Out Of Working Hours Versus In Working Hours: An Observational Cohort Study Of 11,461 Patients

M Bilal Iqbal1, Charles D. B Jsoner, Ghada Mikhail2, Ramzi Khamsi2, Andrew Archbold3, Tom Crate4, San Firooz3, Sandeep S. Kalra2, Charles Knight5, Pit Lim5, Anthony Mathur6, Pascal Meier4, Roby Rakhit7, Simon Redwood8, King Philip A. MacCarthy9, Miles C. Dilley1, Iqbal S. Malik2, Pitt Lim5, Anthony Mathur6, Pascal Meier4, Roby Rakhit7, Simon Redwood8, King Philip A. MacCarthy9, Miles C. Dilley1, Iqbal S. Malik2

1Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom, 2University College London Hospital NHS Foundation Trust, London, United Kingdom, 3St Georges Hospital NHS Trust, London, United Kingdom, 4University College London Hospital NHS Foundation Trust, London, United Kingdom, 5King’s College Hospital NHS Trust, London, United Kingdom, 6Royal Free London NHS Foundation Trust, London, United Kingdom, 7King’s College London, London, United Kingdom, 8King’s College London, London, United Kingdom

Background: Primary percutaneous coronary intervention (PPCI) is the treatment of choice for ST-elevation myocardial infarction (STEMI). The optimum delivery of this service requires an integrated, multi-disciplinary, consultant-led, protocol-driven approach. It is widely recognised that resources including availability of medical personnel are limited during out of working hours, particularly at night. Currently, it is unclear whether PPCI during working hours is associated with improved outcomes.

Methods: We conducted an observational analysis for 11,461 patients with STEMI who underwent PPCI between 2004-2011 at all 8 tertiary cardiac centres in London, UK. The primary outcome was all-cause mortality at 1 year. We defined working hours as 0-5pm (Mon-Fri). We compared outcomes in patients treated out of working hours (OHH) versus in working hours (IWH). Cox-proportional hazard models built using a stepwise approach. It is widely recognised that resources including availability of medical personnel are limited during out of working hours, particularly at night. Currently, it is unclear whether PPCI during working hours is associated with improved outcomes.

Results: Of the 11,461 patients in the analysis, 7494 patients (65.3%) were treated with PPCI during OHH. There was no difference in 1-year mortality rates when comparing OHH vs. IWH (7.8% vs. 7.4%, p = 0.21). Multivariate analysis demonstrated that PPCI during OHH was not a predictor for 1-year mortality (HR = 1.11, 95% CI: 0.94-1.32, p = 0.201). When stratifying OHH into 2-hourly intervals, multivariate analysis demonstrated that there was no particular time interval that was associated with increased mortality. When analysing 5228 patients in propensity-matched cohorts, again, PPCI during OHH was not a predictor for 1-year mortality (HR = 1.10, 95% CI: 0.90-1.34, p = 0.356). Using enrollment year as an instrumental variable, PPCI during OHH did not affect mortality (absolute difference = 2.1%, 95% CI: -12.6% to +16.8%, p = 0.888).

Conclusions: In this observational analysis of unselected STEMI patients, PPCI outside routine working hours compared to within routine working hours is safe with no difference in 1-year mortality.

TCT-29
CLINICAL AND ANGIOGRAPHIC PROFILE OF PATIENTS UNDERGOING PRIMARY: DATA FROM FIRST NATIONWIDE REGISTRY

ABDURRAZZAK GEHANI1, SALAH ARAFA1, ARAHMAN ARAB1, MAGDIH YACOB1

1HEART HOSPITAL, DOHA, Qatar, 2QCRC, QATAR, DOHA, Qatar

Background: This brief describes the set up and the preliminary results of the “first Nationwide” 24/7 Primary PCI for ST-Elevation Myocardial Infarction Program in the gulf region. Methods: In our center over 3500 diagnostic and 1500 Interventional PCI, including Primary PCI procedures were performed in 2013. With this experience, we proceeded to setup a nationwide Primary PCI program such that all patients with ST-Elevation Myocardial Infarction (STEMI) were referred seamlessly for immediate Primary PCI through coordination of all Cardiology, Emergency and Ambulance services in the whole country, and under one control and command center. Since its establishment, we hereby report 422 patients undergoing Primary PCI in 6 months. The clinical and angiographic data were collected and analyzed.

Results: Primary PCI was performed in 422 patients with STEMI (10 months data will be presented at the conference). The mean age was 55±9.3 years. The program allowed faster and direct transfer of patients to the Primary PCI facility leading very short Door-to-Balloon Time (DBT) of 52.8±25 min (<90% of patients were < 90 min). For those referred from non-Primary PCI facility, 77% had DBT of < 120 min (as stated in the guidelines)(mean of 80±20.7 min). The overall in-hospital mortality for Primary PCI patients was 2.8%. Radial approach was used in nearly half the patients (43.5%) and general access was done by the other 56.5% with similar DBT for both. More precisely, the time from arrival to Cath lab to Balloon Dilation (procedure time) was similar for both approaches 18.6±8.3 min for femoral and (17.7±7.2 min for Radial). Overall, less than TIMI III flow (i.e. TIMI 0, 1 or II) was found in 85% of patients before Primary PCI, of these, full TIMI III flow was achieved in 93% of these cases. Achievement of this TIMI III flow was also similar between Femoral and Radial approaches. Conclusions: This is the first coordinated “Nationwide” Primary PCI program in the gulf region. The data emphasize how good communication allows Primary PCI for all STEMI patients, at a very short DBT and with low in-hospital mortality. Radial and Femoral approaches were used almost equally with similar achievement of TIMI III flow and procedure time.

TCT-30
Clinical Predictors and Long-term Impact of Enzymatic Infarct Size After Primary PCI in STEMI: THE HORIZONS-AMI Trial

Tomotaka Dohi1, Akiko Maehara1, Bernhard Witzenbichler2, Ke X1, Melissa Nichols1, Sorin Brener1, Roxana Mehran1, Gary S. Mintz3, Gregg W. Stone3, 4Columbia University Medical Center and Cardiovascular Research Foundation, New York, NY, 5Cleveland Cardiovascular Research Foundation and Columbia University, Medical Center, New York, United States, 6Charité Campus Benjamin Franklin, Berlin, Germany, 7Cardiovascular Research Foundation, New York, NY, 8New York Methodist Hospital, Brooklyn, United States, 9Icahn School of Medicine at Mount Sinai, New York, NY, 10Cardiovascular Research Foundation, Washington, United States, 11Columbia University Medical Center and the Cardiovascular Research Foundation, New York, United States

Background: We sought to elucidate: 1) the predictors of enzymatic infarct size assessed by peak CK-MB in pts with ST-segment elevation myocardial infarction (STEMI) undergoing primary coronary intervention (PCI); and 2) the impact of peak CK-MB on cardiac mortality at 3 years. Methods: HORIZONS-AMI was a prospective, open-label, multicenter, dual-arm, 2×2 factorial randomized trial in pts with STEMI presenting < 12 hours after symptom onset. The 2 randomization arms consisted of 1) bivalirudin alone vs heparin plus a glycoprotein IIb/IIIa inhibitor; and 2) TAXUS paclitaxel-eluting stents (PES) vs bare metal stents (BMS). We evaluated infarct size according to peak CK-MB ratio (peak-CK-MB/upper limit of normal (ULN)). STEMI Peak CK-MB ratio was available in 3068 of 3345 patients (91.7%). Median peak CK-MB ratio was 13.9 (IQR 5.8 to 32.4). By linear regression, the independent predictors of peak CK-MB ratio were US location (p < 0.0001), LAD culprit location (p < 0.0001), baseline TIMI grade 0 (p < 0.0001), and post-stent balloon dilatation (p < 0.04). Beta-blocker use before PCI predicted lower peak CK-MB (p = 0.03). In a covariate-adjusted Cox regression model, peak CK-MB ratio was an independent predictor of 3-year cardiac mortality (Table). Results: The HORIZONS-AMI data demonstrate that high enzymatic infarct size is associated with increased cardiac mortality. Conclusions: These findings will allow clinicians to counsel patients at risk for STEMI regarding risk of cardiac mortality and should direct future research into risk reduction interventions in this population.

Table. Independent Predictors of 3-year Cardiac Mortality

<table>
<thead>
<tr>
<th>Hazard ratio</th>
<th>95% Confidence Interval</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak CK-MB ratio (per 100 ULN)</td>
<td>1.13</td>
<td>1.04 to 1.22</td>
</tr>
<tr>
<td>Age (per 5 years)</td>
<td>1.20</td>
<td>1.09 to 1.31</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>2.18</td>
<td>1.42 to 3.33</td>
</tr>
<tr>
<td>Killip class 2-4</td>
<td>2.45</td>
<td>1.51 to 3.97</td>
</tr>
<tr>
<td>Baseline creatinine (per 0.1 mg/dL)</td>
<td>1.05</td>
<td>1.03 to 1.07</td>
</tr>
<tr>
<td>Bivalirudin use (vs. UFH+GPI)</td>
<td>0.47</td>
<td>0.31 to 0.72</td>
</tr>
<tr>
<td>Acquired thrombocytopenia</td>
<td>1.84</td>
<td>1.19 to 2.87</td>
</tr>
</tbody>
</table>

Major bleeding | 2.53 | 1.56 to 4.11 | <0.001 |

1PCI – percutaneous coronary intervention; UFH – unfractionated heparin; GPI – glycoprotein IIb/IIIa inhibitor.