PCN3
SURVIVAL AFTER LOCOREGIONAL RECURRENCE OR SECOND PRIMARY BREAST CANCER: IMPACT OF THE DISEASE-FREE INTERVAL
Witteveen A1, Kwast ABG2, Sonke GJ3, Uzeren MJ1, Siesling S2
1University of Twente, MIRA Institute for Biomedical Technology & Technical Medicine, Enschede, The Netherlands; 2Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands; 3MIRA Institute for Biomedical Technology & Technical Medicine and University of Twente, The Netherlands

OBJECTIVES: The association between the disease-free interval (DFI) and survival after a locoregional recurrence (LRR) or second primary (SP) breast cancer remains uncertain. The objective of this study is to clarify this association to obtain more information on expected prognosis.

METHODS: Women diagnosed with early breast cancer between 2003-2006 were selected from the Netherlands Cancer Registry. LRRs and SP tumours within five years of first diagnosis were examined. The study period was subsequently divided into three equal intervals. Prognostic significance of the DFI on survival after a LRR or SP tumour was determined using Kaplan-Meier estimates and multivariable Cox regression analysis. Follow-up was complete until January 1, 2013. RESULTS: A total of 36,255 women was included in the analysis, of whom 98% of cases were breast-only patients. Median follow-up was 6.9 years. After the first LRR or SP tumour, respectively, median survival was 10.4 (10.0-10.8) years and 9.5 (9.1-9.9) years, whereas median age was 62 (60-65) years and 60 (58-63) years, respectively. Women with a shorter DFI had worse OS. CONCLUSIONS: DFI is an important prognostic factor for survival, with a longer DFI predicting better prognosis.

PCN36
LONG TERM SURVIVAL OF PATIENTS WITH VARIOUS LUNG CANCER HISTOLOGY IN THE NETHERLANDS: 5 YEARS FOLLOWUP
Scheurleer F1, Tjan-Heijnen V1, van Dijk KA1, Pan F1, Sorensen S1, Sun S1, Van Sanden S1, Sengupta N1, Gaudig M1
1Evidera, Bethesda, MD, USA, 2Janssen Pharmaceutical Companies of Johnson and Johnson, Titusville, NJ, USA, 3University Hospitals Leuven, Leuven, Belgium, 4Janssen Pharmaceuticals, Inc, Karztan, NJ, USA, 5Janssen Pharmaceuticals Inc, Neuss, Germany

OBJECTIVES: For patients with relapsed or refractory (R/R) mantle cell lymphoma (MCL), prognosis is poor, with a median survival of one to two years, and treatment options are very limited. Therefore, more information on expected prognosis is needed. Loglogistic and gamma distributions were developed to explain the survival of patients, compared to other distribution models. The objective of this study was to examine the parametric functions that best fit data in lung cancer (LC) of various histologies in SEER. Epidemiology, and End Results (SEER) program may provide good validation on the information on expected prognosis. Results: A total of 6,341 patients were grouped by their histological classification. 5,099 patients were included in the study, of whom 95% were male. The most common histology was non-small cell lung cancer (40%). Survival was worst for small cell lung cancer (5-year OS = 16%), followed by non-small cell lung cancer (5-year OS = 27%) and adenocarcinoma (5-year OS = 39%). CONCLUSIONS: The SEER data included patients with all different types of lung cancer. However, the number of patients in each subgroup was limited, which led to the conclusion that the survival rates as calculated using other models were probably more accurate. The objective of this study is to clarify this association to obtain more information on expected prognosis.

PCN38
SIMULATION MODEL OF IBRUTINIB IN TREATMENT OF RELAPSED OR REFRACTORY MANTLE CELL LYMPHOMA (MCL)
Peng Y1, Sorensen S2, Pan F1, Dorman E1, Sun S1, Van Sanden S1, Sengupta N1, Gaudig M1
1Evidera, Bethesda, MD, USA, 2Janssen Pharmaceutical Companies of Johnson and Johnson, Titusville, NJ, USA, 3University Hospitals Leuven, Leuven, Belgium, 4Janssen Pharmaceuticals, Inc, Karztan, NJ, USA, 5Janssen Pharmaceuticals Inc, Neuss, Germany

OBJECTIVES: For patients with relapsed or refractory (R/R) mantle cell lymphoma (MCL), prognosis is poor, with a median survival of one to two years, and treatment options are very limited. Therefore, more information on expected prognosis is needed. Loglogistic and gamma distributions were developed to explain the survival of patients, compared to other distribution models. The objective of this study was to examine the parametric functions that best fit data in lung cancer (LC) of various histologies in SEER. Epidemiology, and End Results (SEER) program may provide good validation on the information on expected prognosis.

RESULTS: A total of 6,341 patients were grouped by their histological classification. 5,099 patients were included in the study, of whom 95% were male. The most common histology was non-small cell lung cancer (40%). Survival was worst for small cell lung cancer (5-year OS = 16%), followed by non-small cell lung cancer (5-year OS = 27%) and adenocarcinoma (5-year OS = 39%). CONCLUSIONS: The SEER data included patients with all different types of lung cancer. However, the number of patients in each subgroup was limited, which led to the conclusion that the survival rates as calculated using other models were probably more accurate. The objective of this study is to clarify this association to obtain more information on expected prognosis.