8th International Conference on Photonic Technologies LANE 2014

Finite-difference time-domain modeling of laser-induced periodic surface structures

G.R.B.E. Römera,*, J.Z.P. Skolskia,b, J. Vincenc Oboňaa,b, A.J. Huis in ’t Velda

aUniversity of Twente, Chair of Applied Laser Technology, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
bM2i Materials innovation institute, Mekelweg 2, 2628CD, Delft, The Netherlands

Abstract

Laser-induced periodic surface structures (LIPSSs) consist of regular wavy surface structures with amplitudes in the (sub)micrometer range and periodicities in the (sub)wavelength range. It is thought that periodically modulated absorbed laser energy is initiating the growth of LIPSSs. The “Sipe theory” (or “Efficacy factor theory”) provides an analytical model of the interaction of laser radiation with a rough surface of the material, predicting modulated absorption just below the surface of the material. To address some limitations of this model, the finite-difference time-domain (FDTD) method was employed to numerically solve the two coupled Maxwell’s curl equations, for linear, isotropic, dispersive materials with no magnetic losses. It was found that the numerical model predicts the periodicity and orientation of various types of LIPSSs which might occur on the surface of the material sample. However, it should be noted that the numerical FDTD model predicts the signature or “fingerprints” of several types of LIPSSs, at different depths, based on the inhomogeneously absorbed laser energy at those depths. Whether these types of (combinations of) LIPSSs will actually form on a material will also depend on other physical phenomena, such as the excitation of the material, as well as thermal-mechanical phenomena, such as the state and transport of the material.

Keywords: Laser-induced Periodic Surface Structures; Model; LIPSS; Maxwell curl equations; FDTD

1. Introduction

Laser-induced periodic surface structures (LIPSSs) are periodic wavy surface features, or ripples, observed on many types of materials, including semiconductors (Birnbaum, 1965; Emmony et al., 1973; Young et al., 1983), metals (Siegrist, 1973; Jee et. al., 1988), dielectrics (Temple and Soilau, 1981) and polymers (Baudach et al., 1999; Csete et al., 2004). The LIPSSs are usually categorized, based on the spatial periodicity Λ, see Table 1 for an overview. First, when the spatial periodicity Λ of the LIPSSs is usually close to the laser wavelength λ and the LIPSS are oriented orthogonal to the polarization of the light, the LIPSSs are commonly referred to as Low Spatial Frequency LIPSSs (LSFLs), but also as regular ripples (Römer et al., 2009). LSFLs can be formed by continuous wave (cw), as well as pulsed laser radiation. However, for ultra-short laser pulses, the periodicity of LSFLs may be smaller than the laser
High Spatial Frequency LIPSSs are formed on the surface when ultra-short laser pulses, with durations in the femtosecond and picosecond regime, are exposing the material to circularly polarized laser radiation (at normal incidence), no well-defined ripples are formed, but cone-like protrusions or holes form, which are isotropically speckled on the surface (van Driel, 1982; Camacho-Lopez et al., 2012). When exposing the material to linearly polarized laser radiation (parallel (∥) or orthogonal (⊥) to the polarization direction of the laser radiation (Skolski et al., 2013; Bonse et al., 2010, 2005), but in rare cases can be parallel to the polarization direction of the laser radiation (Young et al., 1983). When the surface is exposed to a high energy dose. These LIPSSs exhibit a spatial periodicity larger than the laser wavelength. In any case, LSFLs mainly form at fluence levels close to the single pulse ablation threshold. The second type of LIPSSs show a periodicity (much) smaller than the laser wavelength—i.e. \(\Lambda < \lambda \), and are usually referred to as **High Spatial Frequency LIPSSs** (HSFLs), but also as **fine ripples** (Okada et al., 2008; Römer et al., 2009). HSFLs are formed on the surface when ultra-short laser pulses, with durations in the femtosecond and picosecond regime, are applied. The third type of LIPSSs form when the surface is exposed to high pulse energy and/or numerous pulses—i.e. when the surface is exposed to a high energy dose. These LIPSSs exhibit a spatial periodicity larger than the laser wavelength—i.e. \(\Lambda > \lambda \), and are usually referred to as **Grooves**. The Grooves usually occur on locations on the surface where a significant amount of material has been removed. The preferential orientation of Grooves is usually parallel or numerous pulses–i.e. \(\Lambda \approx \lambda \). The theory of Sipe et al. (1983), which is also referred to as “Sipe’s theory” or **Efficacy factor theory**, provides a mathematical description of this interaction. This theory predicts that the absorbed laser energy, just below the surface, shows a spatial periodicity. Moreover, it is assumed that LIPSSs originate at the locations where the level of

Table 1. Spatial periodicity \(\Lambda \) of LIPSSs—i.e. of LSFL and HSFL, compared to the wavelength \(\lambda \) of the laser radiation for various materials. LSFLs are oriented orthogonal to polarisation direction of the laser radiation. HSFL can both be oriented orthogonal (⊥) or parallel (∥) to the polarisation.

<table>
<thead>
<tr>
<th>Material</th>
<th>Type</th>
<th>Periodicity (\Lambda)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>LSFL</td>
<td>(\Lambda \approx 0.94\lambda)</td>
<td>Haneman and Nemanich (1982)</td>
</tr>
<tr>
<td>Si</td>
<td>LSFL</td>
<td>(0.7 \leq \Lambda / \lambda \leq 0.96)</td>
<td>Costache et al. (2004); Bonse et al. (2002, 2009, 2010)</td>
</tr>
<tr>
<td>Si</td>
<td>HSFL,∥</td>
<td>(\Lambda \approx 0.25\lambda)</td>
<td>Costache et al. (2004)</td>
</tr>
<tr>
<td>Molten quartz</td>
<td>LSFL</td>
<td>(\Lambda \approx 0.71\lambda)</td>
<td>Keilmann and Bai (1982)</td>
</tr>
<tr>
<td>NaCl</td>
<td>LSFL</td>
<td>(\Lambda \approx 0.67\lambda)</td>
<td>Temple and Solanu (1981)</td>
</tr>
<tr>
<td>Ti</td>
<td>HSFL,∥</td>
<td>(0.08 \leq \Lambda / \lambda \leq 0.12)</td>
<td>Bonse et al. (2013)</td>
</tr>
<tr>
<td>TiN</td>
<td>HSFL</td>
<td>(\Lambda \approx 0.74\lambda)</td>
<td>Bonse et al. (2000)</td>
</tr>
<tr>
<td>TiN</td>
<td>HSFL,⊥</td>
<td>(\Lambda \approx 0.16)</td>
<td>Yasumaru et al. (2003)</td>
</tr>
<tr>
<td>Alloyed steel (800H)</td>
<td>LSFL</td>
<td>(\Lambda \approx 0.63\lambda)</td>
<td>Huis in ’t Veld and van der Veer (2010)</td>
</tr>
<tr>
<td>Alloyed steel (800H)</td>
<td>HSFL,∥</td>
<td>(0.15 \leq \Lambda / \lambda \leq 0.24)</td>
<td>Huis in ’t Veld and van der Veer (2010)</td>
</tr>
<tr>
<td>Pt</td>
<td>LSFL</td>
<td>(0.66 \leq \Lambda / \lambda \leq 0.76)</td>
<td>Vorobjev et al. (2007)</td>
</tr>
<tr>
<td>InP</td>
<td>LSFL</td>
<td>(0.74 \leq \Lambda / \lambda \leq 0.94)</td>
<td>Bonse et al. (2005)</td>
</tr>
<tr>
<td>InP</td>
<td>HSFL,⊥</td>
<td>(\Lambda \approx 0.24\lambda)</td>
<td>Borowiec and Haugen (2003)</td>
</tr>
<tr>
<td>Diamond</td>
<td>LSFL</td>
<td>(\Lambda \approx 0.94\lambda)</td>
<td>Wu et al. (2003)</td>
</tr>
<tr>
<td>Diamond</td>
<td>HSFL,∥</td>
<td>(\Lambda \approx 0.26\lambda)</td>
<td>Wu et al. (2003)</td>
</tr>
<tr>
<td>ZnO</td>
<td>HSFL,⊥</td>
<td>(0.25 \leq \Lambda / \lambda \leq 0.35)</td>
<td>Borowiec and Haugen (2003)</td>
</tr>
<tr>
<td>Sapphire</td>
<td>HSFL,⊥</td>
<td>(\Lambda \approx 0.34\lambda)</td>
<td>Borowiec and Haugen (2003)</td>
</tr>
</tbody>
</table>

2. Model

2.1. Efficacy factor theory

The strong correlation of the periodicity of LIPSSs to the laser wavelength, as well as the strong correlation of the orientation of LIPSSs to the polarization, suggest that their formation, or at least the early stages of LIPSSs formation (Höhm et al., 2013; Derrien et al., 2013), can be explained by an electromagnetic approach. That is, LIPSSs formation is explained as the result of the interaction of laser radiation, with the rough surface of the material. The paper discusses (the results of) a numerical model, aimed at the prediction of the periodicity and orientation of LSFL, HSFL and Grooves. This model includes a qualitative description of material removal (ablation) in order to verify whether this phenomenon can explain the growth of Grooves. Usually, simulation results are presented and discussed in the frequency domain. However, this paper presents and discusses the results in the space domain.
absorbed energy is the largest. Mathematically, Sipe’s theory is defined in the frequency domain and states that the inhomogeneous energy absorption $A(\tilde{k})$ is proportional to

$$ A(\tilde{k}) \propto \eta(\tilde{k}, \tilde{k}_i)|b(\tilde{k})|, \quad (1) $$

where $\tilde{k} = (k_x, k_y)$ is a vector spanning the frequency domain parallel to the surface and normalized by the norm of the wave vector \tilde{k}_i. Further, $b(\tilde{k})$ is the Fourier transform of the surface roughness. Here, $\eta(\tilde{k}, \tilde{k}_i)$ is the Efficacy factor determining efficiency by which the surface roughness $b(\tilde{k})$ leads to an inhomogeneous energy absorption at frequency component \tilde{k}. Based on these definitions, Sipe et al. (1983) describe the procedure to derive an analytical expression for $\eta(\tilde{k}, \tilde{k}_i)$ given the statistical properties of the surface roughness (in terms of a filling factor and a shape factor), laser wavelength, angle of incidence and the optical properties (complex index of refraction \tilde{n}) of the material under consideration.

Unfortunately the Efficacy factor theory suffers from some limitations, when trying to predict, for example, some properties of HSFLs and Grooves. These limitations can be attributed to the fact that, to calculate $\eta(\tilde{k}, \tilde{k}_i)$, the Efficacy factor theory assumes that:

1. the optical properties of the material (complex index of refraction \tilde{n}) are constant, despite the fact that the optical properties of the material change significantly during the laser pulse,
2. the amplitude of the surface roughness is (much) smaller than the wavelength λ of the incident laser radiation. As this assumption may be valid for the initial roughness of the surface, it will definitely not be the case in multi pulse experiments, when LIPSSs with large(r) amplitudes form and grow, pulse-by-pulse (see section 3),
3. the amplitude of the surface roughness is (much) smaller than the periodicity Λ of the inhomogeneously absorbed laser energy.

Especially the last two assumptions limit the applicability of the model to predict Grooves, because Grooves typically show a periodicity larger than the laser wavelength. Further, as $\eta(\tilde{k}, \tilde{k}_i)$ is computed just below the surface only, no analysis of the energy absorption in the bulk of the material is possible. Finally, the model does not allow to calculate the shape and dimensions (amplitude) of the absorbed laser energy in the spatial domain, but only in the frequency domain.

2.2. Finite-difference time-domain model

To address some of the limitations addressed above, we employed the finite-difference time-domain (FDTD) method (Yee, 1966) to numerically solve the two coupled Maxwell’s curl equations, for linear, isotropic, dispersive materials with no magnetic losses, in the 3D space and time domain (Skolski et al., 2012; Skolski, 2014)

$$ \frac{\partial \vec{H}}{\partial t} = -\vec{\nabla} \times \vec{E} \quad \text{and} \quad \epsilon_0 \epsilon_r \frac{\partial \vec{E}}{\partial t} + \sigma \vec{E} = -\vec{\nabla} \times \vec{H}, \quad (2) $$

where \vec{E} denotes the electric field, \vec{H} the magnetic field, t time, μ_0 the permeability in vacuum, ϵ_r the relative permittivity of the material, σ the electric conductivity of the material. To account for the changing optical properties, due to the excited state of the material as a result of absorbed laser energy, the so-called Sipe-Drude model, as proposed by (Bonse et al., 2009), was adopted. This model assumes a modified, yet still constant, complex permittivity $\tilde{\epsilon}_r^e = \tilde{\epsilon}_r + \Delta \tilde{\epsilon}_{\text{Drude}}$ of the material, by describing the transient dielectric function of the laser-excited material by a Drude model. The locally absorbed energy was computed from the sum of the electric losses $\sigma(\tilde{E})^2 + \vec{J} \cdot \vec{E}$ in each cell of the numerical grid at each time step, where \vec{J} denotes the Drude internal current (Skolski, 2014). It was verified that the numerical results are in good agreement with the analytical results of the Sipe-Drude model (Skolski et al., 2012; Skolski, 2014).

It was found that the FDTD model predicts the periodicity and orientation of many types of LIPSSs which might occur on the surface of a sample (Skolski, 2014; Römer et al., 2014). The FDTD simulations even indicated HSFLs oriented perpendicular to the polarization, which is not handled correctly by the analytical model of Sipe et al. However, it should be noted that the numerical FDTD model predicts the signature or “fingerprints” of several types of
LIPSSs, but whether these LIPSSs will actually form on a material will also depend on other physical phenomena. In addition, no signature of Grooves was found by using this FDTD model. This is discussed in the next subsection.

![Flowchart of numerical simulations including “ablation”](image)

Fig. 1. Flowchart of numerical simulations including “ablation”.

2.3. Qualitative ablation model

Besides the absorbed laser energy, LIPSS formation is also affected by other physical phenomena occurring during and/or after the laser pulse, such as, but not limited to, free electron generation, electron heating, electron-phonon coupling, non-thermal melting, (in)homogeneous melting and ablation mechanisms like spallation, hetero- & homo-geneous nucleation (phase explosion), and fragmentation (Rethfeld et al., 2004; Breitling et al., 2004; Lorazo et al., 2006; Zhigilei et al., 2009; Perez and Lewis, 2003; Lewis and Perez, 2009). To compute the effects of these phenomena would require a Two-Temperature Model (TTM) in order to model the distribution and diffusion of absorbed energy in the electron gas, and the energy transfer to the lattice, as well as numerous additional models to account for material excitation, transport and ablation, mentioned above. Analyse these effects numerically, computational demanding techniques, such as Gas Dynamics, Molecular Dynamics and Monte Carlo would be required (Leveugle et al., 2004; Anisimov et al., 2008; Lorazo et al., 2006; Zhigilei et al., 2009; Perez and Lewis, 2003; Lewis and Perez, 2009). Moreover, the FDTD model, described in the previous subsection, allows to compute the absorbed laser energy in the substrate due to a one plane wave only. The properties of LIPSSs are known to vary on a pulse-to-pulse basis, as every subsequent laser pulse is “confronted” with the LIPSSs formed by the previous laser pulse.

In order to quickly evaluate whether Grooves formation could be explained on the basis of this pulse-to-pulse evolution of the surface, a simple and qualitative ablation model was incorporated into the FDTD model (Skolski, 2014). That is, once the absorbed laser energy $A(x, y, z)$ is computed by an FDTD simulation, the plane (x, y, z) of
a constant absorptivity A_a is determined. Here, A_a denotes the absorbed energy threshold at which ablation of the material occurs. Next, the material above the plane is removed (“ablated”) from the simulation domain, resulting in a new/updated surface roughness due to the “pulse” under consideration. This updated surface topography is fed into the next run of the FDTD simulations (referred to as an FDTD cycle), resulting in a new absorbed energy profile in the material, see Fig. 1. This iteration of simulations (FDTD cycles) is repeated until the surface profile converges.

The absorbed energy threshold A_a is related to an ablation depth Δ_a below a flat surface. The latter is an input parameter of the model. Therefore, the simulations start by a FDTD run in which the initial surface is perfectly flat and the absorbed energy at the depth of Δ_a is determined. The value found is set equal to A_a.

![Fig. 2. Top view of the “growth” of LSFLs as function of FDTD simulation cycles, starting from an initial random rough surface. The black arrow in graph (a) indicates the polarization direction of the laser radiation. The number of FDTD cycles is indicated in the bottom of each graph. The simulations were performed with $\Delta_a = 50\text{nm}$ and a complex index of refraction of $\tilde{n} = 1.339 + 3.22j$, corresponding to a density of free electrons in the conduction band of silicon of $N_e = 8 \cdot 10^{27}\text{m}^{-3}$. In these graphs, peaks of the LSFL are indicated in the bright(er) scales of gray, whereas the darker grays indicate the valleys of the LSFL.](image)

3. Simulation results

As an initial rough surface, “bumps” with heights small compared to the laser wavelength and randomly distributed over the surface, were assumed. The dimensions of the Yee cells, the 3D grid on which the Maxwell equations are numerically solved, were set to 20nm in both x and y direction, and 5nm in z direction. The time step during the simulations was set to $1.5 \cdot 10^{-17}s$. The laser radiation was modeled as a plane wave of wavelength $\lambda = 800\text{nm}$ (common for femtosecond pulsed laser sources), linearly polarized along the x-axis at normal incidence to the surface, and traveling in the z-direction. The optical properties were set to those of (excited) silicon, characterized by the density of free electrons N_e and resulting complex index of refraction \tilde{n}, based on the above mentioned Sipe-Drude model.
Fig. 3. Cross-sections and longitudinal section of LIPSS. (a) Cross sections of LSFL in Fig. 2 at $y = 10\mu m$, as function of the number of FDTD cycles. (b) longitudinal section of LSFL and Grooves in Fig. 2(i) at $x = 10\mu m$. (c) Cross sections of HSFL in Fig. 4 at $y = 10\mu m$, as function of the number of FDTD cycles.

3.1. Low Spatial Frequency LIPSS (LSFL) and Grooves

Fig. 2 shows a top view of the formation of LSFLs on a simulation area of $20\times20\mu m^2$, starting from the initial rough surface, as a function of the number of FDTD-feedback cycles. The FDTD feedback simulations were performed at $N_e = 8 \cdot 10^{27} m^{-3}$ (implying $\bar{n} = 1.339 + 3.22j$) and $\Delta a = 50nm$.

As can be observed from this figure, the surface morphology changes mainly during the first 3 FDTD cycles. That is, already after a first simulation run, the initial roughness is “erased” and periodic structures can be observed, see Fig. 2(b). After 9 cycles, these periodic structures are well developed, see Fig. 2(i). With increasing FDTD cycle, the structures become more regular and more oriented perpendicular to the polarization direction of the laser radiation. Fig. 3(a) shows cross sections along the x-axis (at $y = 10\mu m$) of the results in Fig. 2.

Also from this figure, it can be concluded that the periodic structures grow and become more regular with increasing FDTD cycle. The spatial periodicity of the structures in Fig. 2(i) and Fig. 3(a, bottom) was determined to be $\Lambda \approx 750nm$. It can be concluded from this periodicity, being close to the wavelength $\lambda = 800nm$ of the laser, and oriented perpendicular to its polarization direction, that these periodic structures are LSFL, see Table 1. The averaged peak-to-valley height of the LSFL in Fig. 2(i) was found to equal about $125nm$. Therefore, although an (over)simplified ablation model was employed, the predicted height of LSFLs are in the range of heights of LSFLs found in experiments (Oboña et al., 2014). Hence, the FDTD model including a simplified model of ablation, predicts the formation and growth of LSFL.
Besides LSFLs, careful analysis of Fig. 2(i) reveals a periodic structure, superimposed on the LSFLs, but oriented parallel to polarization direction. The spatial periodicity of the latter structures is larger than the wavelength of the laser. Fig. 3(b) shows the longitudinal section along the y-axis (at \(x = 10\mu m\)) of the results in Fig. 2(i). The spatial periodicity of these structures was found to range from 1.5\(\mu m\) to 3.3\(\mu m\). It can be concluded from this periodicity, being larger than the laser wavelength, and oriented parallel to its polarization direction, that these periodic structures match the characteristics of Grooves. Hence, the FDTD model including the simplified model of ablation, also seems to be able to predict the formation and growth of Grooves.

3.2. High Spatial Frequency LIPSS (HSFL)

Fig. 4 shows a top view of the formation of HSFLs starting from the initial rough surface, as a function of the number of FDTD-feedback cycles. The simulation domain covered an area of 20×20 \(\mu m^2\), but for clarity only an area of 10×10 \(\mu m^2\) is shown in the figure. The FDTD feedback simulations were performed at \(N_e = 4 \cdot 10^{27} m^{-3}\) (implying \(\tilde{n} = 1.943 + 1.116j\)) and \(\Delta a = 30 nm\). These latter two values are smaller than in the previous subsection, where results for LSFL were shown. That is, because HSFL occur at lower laser fluence levels than LSFL, implying lower excitation of the silicon (smaller value of \(N_e\)) and smaller ablation depth, as well. Like in the previous subsection, the surface morphology changes mainly during the first 3 FDTD cycles. That is, already after one or two FDTD cycles, the initial roughness is “erased” and periodic structures can be observed, see Fig. 4(c). After 9 cycles, these periodic structures are well developed, see Fig. 4(i). With increasing FDTD cycle, the structures become more regular and more oriented perpendicular to the polarization direction of the laser radiation. Fig. 3(c) show cross sections along...
the x-axis (at y = 10µm) of the results in Fig. 4. The spatial periodicity Λ of the structures in Fig. 4(i) and Fig. 3(c, bottom) was found to be in the range 0.14λ ≤ Λ ≤ 0.17λ, where λ = 800nm is the wavelength of the laser radiation. This range of periodicities is within the expected range of those of HSFLs in Table 1. The averaged peak-to-valley height of HSFLs increases after each FDTD cycle. After 7, 8 and 9 FDTD cycles this height was found to equal about 150nm, 180nm and 205nm respectively, which are comparable to the values found by Hsu et al. (2008) on gallium phosphide. The orientation of the HSFLs in Fig. 4 is perpendicular to the polarization, which is not handled correctly by the analytical model of Sipe et al. Hence, the FDTD simulations including the simplified model of ablation, also are able to predict the formation and growth of HSFLs⊥. The FDTD simulations including the simplified model of ablation was also found to predict HSFLs parallel to the polarization, but this result is not shown here.

4. Conclusions

The finite-difference time-domain (FDTD) method, to numerically solve the two coupled Maxwell’s curl equations, for linear, isotropic, dispersive materials with no magnetic losses, was applied in order to simulate the interaction of laser radiation with the rough surface of a material. This simulation model was extended to include a simple non-physical model of laser material removal by ablation. Some simulation results in the space domain were presented and discussed. It was shown that the numerical FDTD model predicts several types of Laser-induced Periodic Surface Structures (LIPSSs), including Grooves, which are characterised by a spatial periodicity larger than the wavelength of the laser, as well as High Spatial Frequency LIPSSs (HSFLs) with an orientation perpendicular to the polarization of the laser radiation. Both types of LIPSSs are not handled correctly by the “classical” analytical Efficacy factor model. The FDTD model, and the FDTD model including a simple non-physical model of laser ablation, can explain LIPSS formation in the framework of an electromagnetic approach.

References

