
Andrea Prosperetti

Citation: Physics of Fluids 25, 059102 (2013); doi: 10.1063/1.4805091

View online: http://dx.doi.org/10.1063/1.4805091

View Table of Contents: http://scitation.aip.org/content/aip/journal/pof2/25/5?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Oscillatory instability and fluid patterns in low-Prandtl-number Rayleigh-Bénard convection with uniform rotation


The effect of rotation on the Rayleigh-Bénard stability threshold
Phys. Fluids 24, 114101 (2012); 10.1063/1.4764931

A simple analytic approximation to the Rayleigh-Bénard stability threshold

The amplitude equation for rotating Rayleigh–Bénard convection

Andrea Prosperetti
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA

(Received 27 March 2013; accepted 9 April 2013; published online 23 May 2013)

I would like to thank Dr. Dawes’s for his useful comments\(^1\) on my paper\(^2\) with which I am in total agreement. As he points out, and as is stated in the paper itself\(^2\) the error of the approximate solution presented there can be as large as 15% in certain parameter ranges.

The point of the paper is not the superiority of the numerical values which, these days, are readily made as accurate as one may wish by the use of appropriate software. Rather, this paper and the other one to which Dr. Dawes refers\(^3\) demonstrate an alternative way to approach problems of this type which is, first, of interest in itself and, second, more flexible than existing ones. The latter feature is demonstrated by its ability to produce results for the case of finite plate thermal conductivity and for modes antisymmetric about the mid-plane of the system, for neither of which exact (or better) results seem to be available. While a claim of great accuracy for these approximations would be misplaced, the parameter dependency that they exhibit is a robust feature which can be explored in a fairly straightforward manner on their basis.


\(a\) Also at Faculty of Science and Technology and J. M. Burgers Center for Fluid Dynamics, University of Twente, 7500AE Enschede, The Netherlands. Electronic mail: prosperetti@jhu.edu.