Methods: INFUSE AMI randomized 452 patients with anterior STEMI undergoing primary PCI with bivalirudin anticoagulation to intralipid (IL) bolus abciximab vs. no abciximab and to thrombus aspiration vs. no aspiration. The primary endpoint was cMRI infarct size (IS, % of left ventricular mass) at 30 days. At the clinician’s discretion 257 patients were treated with clopidogrel (Clop) and 155 patients with prasugrel (Pras). Clinical outcomes were compared using propensity adjusted analyses incorporating clinical and angiographic variables relevant to drug selection.

Results: Clop patients were significantly older (62.7y ± 12.7 vs. 57.6y ± 10.4, P<0.0001) and had lower EF (40.5% ± 10.4 vs. 47.4% ± 13.7, P<0.0001) than Pras patients. The two groups achieved similar rates of successful reperfusion: TIMI 3 flow - 89.6% vs. 94.8%, P=0.06, MBG 2 or 3 - 80.4% vs. 83.2%, P=0.46. IS was significantly smaller in Pras patients (16.4% [6.5, 20.0] vs. 17.6% [8.1, 25.7], P=0.05). The incidence of definite or probable stent thrombosis at 24 h and 1 year was 0% vs. 0.3%, P=0.47 and 0% vs. 2.5%, P=0.05, respectively. The propensity adjusted hazard ratios for clinical events to 12 months follow-up are shown in Table.

Conclusions: In this propensity adjusted analysis from the largest yet reported cohort of STEMI patients undergoing bivalirudin supported primary PCI, there appears to be a benefit of treatment with prasugrel rather than clopidogrel with respect to infarct size and 1-year clinical events, including death and stent thrombosis.

TCT-4
Efficacy and Safety of Concurrent Administration of Clopidogrel-loading (600mg) and Prasugrel-loading (60mg) in Patients with Acute ST-Segment Elevation Myocardial Infarction
Lorenz Raber1, Roland Klüngenberg2, Dik Heg3, Henning Kellbaek4, Andreas Baumbach5, David Tuller, Christian M. Matter,6 Ran Kornowski7, Modrag C. Ostojic, François Mach,8 Barts Gencer,9 Arts Moschovitis,10 Nicolas Rodondi11, Giudio G. Stefanini10, Clemens von Birgelen1, Thomas Zanchin1, Marco Roffi12, Peter Jün13, Thomas P. Laschke14, Stephan Weinacker15
1University Hospital Bern, Bern, Switzerland, 2University Hospital Zurich, Zurich, Switzerland, 3Institute of Social and Preventive Medicine, University of Bern, Bern Switzerland, 4Bern University Hospital, Bern, Switzerland, 5Righospitalet Copenhagen, Copenhagen, Denmark, 6Bristol Heart Institute, Bristol, United Kingdom, 7Rabin Medical Center, Petach Tikva, Israel, 8Medical School University of Belgrade, University City Hospital, Belgrade, Serbia and Montenegro, 9University Hospital Geneva, Geneva, Switzerland, 10Geneva University Hospital, Geneva, Switzerland, 11Bern University Hospital, Bern, Switzerland, 12Thomassctrumntoerenttwent and University of Twente, Enschede, Netherlands, 13HOPITAUX UNIVERSITAIRES DE GENEVE (HUG), Geneva, Switzerland, 14University of Bern, Bern, Switzerland, 15Universitätsklinik Zürich, Zürich, Switzerland

Background: Current STEMI guideline recommendations limit the use of prasugrel to clopidogrel-naive patients. However, in daily clinical practice a considerable proportion of STEMI patients undergoing primary PCI are preloaded with clopidogrel. Whether the use of prasugrel in clopidogrel pretreated STEMI patients is safe remains unknown. Similarly, the efficacy of a combined loading dose regimen has not been evaluated.

Methods: Between 1 September 2009 and 15 October 2012, a total of 1,157 STEMI patients were included in the randomized COMFORTABLE AMI trial (NCT 00962416) and 891 STEMI patients in the SPUM ACS registry (NCT 01000701) at 12 centers. Patients were divided into three groups according to type of peri-procedural dural antiplatelet loading: (1) Clopidogrel and subsequent Prasugrel loading dose [CP], (2) Prasugrel loading dose alone [P] (3) Clopidogrel loading dose alone [C]; 23 primary PCI patients were included because they were not exposed to Clopidogrel and Prasugrel. The primary safety endpoint was the rate of BARC type 3, 4 and 5 bleeding at 30 days. The primary efficacy endpoint was the composite of cardiac death, nonfatal MI and nonfatal stroke at 30 days. Outcomes were analyzed using Cox’s Regressions (crude) and multinomial ITP weighted Cox’s Regressions.

Results: A total of 2,025 patients were analysed of whom 428 (21.1%) had received CP, 447 (22.1%) patients P alone, and 1,150 (56.8%) patients C alone. The primary safety endpoint was observed among 1.2% of CP, 1.6% of P, and 1.5% of C patients (CP vs C ad. HR 0.99 (0.36-2.72), PC vs P ad. HR 0.73 (0.22-2.41). The primary safety endpoint occurred less frequently among CP (1.9%) compared with C patients (5.0%, adjusted HR 0.47 (0.22-1.00), but with similar frequency among P and C patients (2.9% vs 5.0%, ad. HR 0.68 (0.27-1.73). The net clinical benefit outcome parameter tended to be lower among CP (2.8%) compared with C patients (6.3%, ad. HR 0.56 (0.30-1.05), whereas no significant difference was observed between P and C patients (3.8% vs 6.3%, ad. HR 0.85 (0.39-1.86).

Conclusions: Among STEMI patients preloaded with Clopidogrel, the concurrent administration of a Prasugrel loading dose appears safe and potentially more effective than Clopidogrel alone.

TCT-5
Relationship Between High Platelet Reactivity on Clopidogrel and Outcomes After DES Implantation: Two-Year Results From the ADAPT-DES Study
Thomas Stuckey1, Ajay J. Kirtane2, Bruce R. Brodie2, Bernhard Witzenbichler2, Giora Weisz3, Michael J. Rinaldi3, Franz-Josef Neumann4, Ivan J. Chavez5, D. Christopher Metzger6, Timothy D. Henry7, David Cox7, Peter L. Duffy8, Ernest L. Mazzaferril9, Rosana Mehran10, Alejandro Guercio11, Helen Parise12, Gregg Stone13
1Lebauer Cardiovascular Research Foundation, Greensboro, NC, 2Columbia University / Cardiovascular Research Foundation, New York, NY, 3Lebauer CV Research Foundation, Greensboro, NC, 4Charité Campus Benjamin Franklin, Berlin, Germany, 5Columbia University, New York, NY, 6Sanger Heart & Vascular Institute, Charlotte, NC, 7Universitäts-Herzzentrum Potsdam - Bad Krozingen, Bad Krozingen, Germany, 8Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, Minneapolis, MN, 9Wellmont CVA Heart Institute, Kingsport, TN, 10Lehigh Valley Health Network, Allentown, PA, 11 Pinehurst Cardiology, Pinehurst, NC, 12Ohio State University, Dublin, OH, 13Mount Sinai Hospital / Cardiovascular Research Foundation, New York, NY, 14Cardiovascular Research Foundation, New York, NY

Background: In the large-scale, prospective, multicenter ADAPT-DES study, we previously demonstrated that at 1 year, high platelet reactivity (HPR) to clopidogrel (PRU >208) was strongly associated with stent thrombosis (ST) after DES, but was protective against major bleeding, and that both impacted mortality such that PRU >208 was not associated with death. DAPT was recommended for at least 1 year in this study. We herein report the ADAPT-DES results at 2-year follow-up.

Methods: VerifyNow P2Y12 assay was performed after successful DES implantation in 8,448 “all-comers” patients enrolled at 11 US and European sites. Univariable and propensity-adjusted multivariable analyses were performed to determine the relationship between HPR and subsequent events.

Results: Median age was 64 years, 25.6% were female, 32.3% had diabetes, and 51.4% (9.6% STEMI) presented with an acute coronary syndrome. HPR on clopidogrel after DES implantation was 12.7% (95% CI 10.4, 14.7, P<0.0001) and had lower EF (40.5% ± 10.4 vs. 47.4% ± 13.7, P<0.0001) than Pras patients. The two groups achieved similar rates of successful reperfusion: TIMI 3 flow - 89.6% vs. 94.8%, P=0.06, MBG 2 or 3 - 80.4% vs. 83.2%, P=0.46. IS was significantly smaller in Pras patients (16.4% [6.5, 20.0] vs. 17.6% [8.1, 25.7], P=0.05). The incidence of definite or probable stent thrombosis at 24 h and 1 year was 0% vs. 0.3%, P=0.47 and 0% vs. 2.5%, P=0.05, respectively. The propensity adjusted hazard ratios for clinical events to 12 months follow-up are shown in Table.

Conclusions: In the present large-scale study, HPR on clopidogrel after DES implantation was an independent predictor of 2-year ST and MI, and was inversely correlated with major bleeding. HPR was not independently correlated to adverse events between years 1 and 2 or all-cause 2-year mortality.

<table>
<thead>
<tr>
<th>Clinical Event</th>
<th>Adjusted HR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>0.18 [0.04, 0.86]</td>
<td>0.03</td>
</tr>
<tr>
<td>Death/MI</td>
<td>0.16 [0.03, 0.76]</td>
<td>0.02</td>
</tr>
<tr>
<td>Horizons-Defined Major Bleeding</td>
<td>2.09 [0.70, 6.21]</td>
<td>0.18</td>
</tr>
<tr>
<td>MACCE</td>
<td>0.37 [0.13, 1.03]</td>
<td>0.06</td>
</tr>
<tr>
<td>MACE</td>
<td>0.33 [0.12, 0.96]</td>
<td>0.04</td>
</tr>
<tr>
<td>Clinically Driven TVR</td>
<td>0.76 [0.18, 3.17]</td>
<td>0.7</td>
</tr>
</tbody>
</table>