inhibited, when IAA was added after the anaerobic period more of the endogenously formed lactate was used up by the nucleus than in the controls without IAA.

From the average of the 3 experiments reported, we may conclude that 18% of the total endogenously formed lactate was used up in the aerobic period and 28% when also IAA was added. In the last column of the Table it is shown that when ATP content of fresh nuclei is taken as 100%, the resynthesis of ATP after anaerobic treatment reached a level of 69%. This percentage is in agreement with the resynthetic capacity of ATP in rat thymus nuclei as published by BRETTEL and KLOUWEN. The addition of 0.050 mM iodoacetate did not influence the resynthesis of ATP very much. Higher amounts of iodoacetate than 1 mM gave a clear and rapid decrease of ATP content.

The possibility exists that the inhibition of respiration and ATP synthesis by higher amounts of iodoacetate as found by other investigators is not caused by the inhibition of glyceralddehydephosphate dehydrogenase. It is known that iodoacetate is not a completely specific inhibitor, not even for compounds with sulphydryl groups.

It is clear from own experiments and from those reported by other workers that glycolysis is involved in nuclear oxidative phosphorylation. A strict dependence, however, as is suggested by McEWEN, cannot be considered as established, since it is possible to inhibit glycolysis by a low concentration of iodoacetate (0.050 mM) while oxygen uptake and ATP synthesis are hardly diminished.

Résumé. Les expériences présentées montrent qu'il est possible d'inhiber au maximum la glycolyse des noyaux isolés du thymus de rat, sans influencer la respiration et la synthèse d'ATP. Elles suggèrent ainsi que, dans ces noyaux, la phosphorylation oxydative ne dépend pas forcément de la glycolyse.

A. W. T. KONINGS

Laboratory of Physiological Chemistry, University of Groningen (The Netherlands), 11 March 1969.

Induction of Morphological Aberrations by Enzyme Inhibition in Drosophila melanogaster

Induction of morphological aberrations by base analogues is reported in Drosophila and in Ephesia. It was concluded that these aberrations were probably a consequence of somatic mutation following the incorporation of the analogues in DNA. We shall report on aberrations induced in Drosophila melanogaster by 5-fluoro-2-deoxyuridine (FUdR) and probably caused by enzyme inhibition.

The flies were reared in 1/4 l cream bottles with 33 ml of a standard food medium (1000 ml water, 19 g agar, 54 g sugar and 16 g dried yeast).

In 5 different wild stocks (Argeles, Riverside, Groningen 3, Groningen 67 and Pacific) FUdR induced the following abnormalities in high frequency: increase of scutellar and dorsocentral bristle number and incisions of the wingborder. Other aberrations which appeared in lower frequency were: 5th vein interruption, small rough eyes, leg malformations and increase of sternopleural chaetae number.

In Table I the effect of several concentrations of FUdR is shown in 76% of 2 wild stocks. In this experiment at concentrations above 1 mg/l mortality increased considerably. Development was already retarded at the lower concentration. The effect on 50% was similar, but the frequency of extra bristles was lower and the frequency of wing notches was higher. On 3 of the wildstocks (Argeles, Riverside and Groningen 3) comparable concentrations of 5-fluorouracil, 5-bromouracil and azauracil had no effect.

In contrast, the folic acid analogue aminopterin caused a similar syndrome of abnormalities (Table I). This is in agreement with results of SCHULTZ who obtained the same effect by adding another folic acid analogue amethopterin.

It has been shown by several authors in different organisms that FUdR blocks the synthesis of thymidine by inhibition of thymidylate synthetase. The folic acid analogues inhibit the enzyme dihydrofolic acid reductase and prevent the synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is a cofactor of thymidylate synthetase. So, both aminopterin and FUdR affect the same step in the synthesis of thymidine. If this causes the abnormalities in Drosophila, it must be expected that addition of folic acid and thymidine will prevent the effect of aminopterin, and thymidine the effect of FUdR. Results of such an experiment are in agreement with this hypothesis (Table I). Preliminary results of experiments in which the flies were reared on chemically defined sterile media suggest that also folic acid deficiency causes the appearance of extra bristles.

The conclusion seems justified that FUdR causes morphological aberrations by inhibition of an enzyme (probably thymidylate synthetase) for thymidine synthesis and not by incorporation of this analogue in DNA or RNA.

It seems possible that RIZKI's results can be explained in the same way. When he added 5-bromo-2-deoxyuridine (BUDR) and 5-fluorouracil (FU) separately he did not find any effect. But BUDR and FU added together caused abnormalities viz. supernumary bristles. He suggests that FU causes a thymidine deficiency, then BUDR would be incorporated in DNA and would cause somatic mutation. However, evidence obtained on mammalian cells suggests the possibility that partition of BUDR could supply the 2-deoxyribose-1-phosphate necessary for conversion

of FU in FUdR. This, then, would result in inhibition of thymidylate synthetase.

An important problem is how aminopterin and FUdR cause simultaneously extra bristles, notchings of the wingborder and rough eyes. The normal differentiation of these organs depends very much on the ordered orientation and the rate of mitotic divisions. Both aminopterin and FUdR retard mitotic divisions. Moreover, BERTSCHMANN found that nitrogen mustard, which is also a strong inhibitor of cell division, causes the same kind of abnormalities as aminopterin and FUdR. Therefore, it seems possible that the abnormalities caused by aminopterin and FUdR are a consequence of disturbance of the normal pattern of cell division.

Induction of morphological aberrations (often phenocopies of mutants) in Drosophila can be achieved by a variety of environmental manipulations, e.g. temperature shocks and all kinds of teratogenic agents. Often the percentage of animals affected is rather low and the results are different in different stocks, both in terms of frequency and types of abnormalities. In our experiment aminopterin and FUdR show a very specific action: the same syndrome is found in wild stocks of different origin. However, this must be expected in view of the action on specific enzymes, which can only be compared with the action of mutant genes. Antimetabolites which inhibit specific enzymes are in fact the ideal phenocopying agents and will be useful tools in elucidation of the relation between differences on the genic level and their effect.

The number of scutellar and dorsocentral bristles in Drosophila has been used as a quantitative character in numerous selection experiments. The genetic variability for this morphological character, revealed by the large selection responses, must be based on molecular variability viz. variability in the amount or activity of specific enzymes. This variability can be achieved by a generous gift of FUdR, Dr. G. VENEMA for making available some of the chemicals and Prof. W. J. FEENSTRA for a critical reading of the manuscript.

Table I. The effect of different concentrations of fluorodeoxyuridine (FUdR) and aminopterin (A) in % of D. melanogaster

<table>
<thead>
<tr>
<th>Stock</th>
<th>FUdR mg/l</th>
<th>A mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacific No. 1</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Pacific No. 2</td>
<td>2.0</td>
<td>4.0</td>
</tr>
<tr>
<td>sc. br. %</td>
<td>6.35</td>
<td>44.9</td>
</tr>
<tr>
<td>mean sc. br.</td>
<td>4.07</td>
<td>4.09</td>
</tr>
<tr>
<td>notch %</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Groningen 67</td>
<td>295</td>
<td>243</td>
</tr>
<tr>
<td>sc. br. %</td>
<td>12.03</td>
<td>2.67</td>
</tr>
<tr>
<td>mean sc. br.</td>
<td>4.15</td>
<td>4.12</td>
</tr>
<tr>
<td>notch %</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Concentrations in mg/l. Figures are averages of 3 cultures. Each culture was stocked with 200 eggs. Averages are given as the percentage of individuals showing increase of scutellar bristles (sc. br.), increase of dorsocentral bristles (d. br.) or notchings along the wingborder.

Genetisch Institut, Rijksuniversiteit te Groningen,
Haren Gn. (The Netherlands), 10 March 1969.

1 C. STERN, Am. Scient. 43, 213 (1954).
4 E. ZEUTHE, Kcro X 60, 37 (1967).
11 A. S. SHERMAN, J. Genet. 44, 204 (1942).
17 F. PAYNE, Indiana Univ. Stud. 36, 1 (1918).
18 A. SHERMAN, J. Genet. 44, 204 (1942).
22 The authors wish to thank Hoffmann-La Roche & Co. (Basle) for a generous gift of FUdR, Dr. G. VENEMA for making available some of the chemicals and Prof. W. J. FEENSTRA for a critical reading of the manuscript.