ON THE DECAY PROCESS OF TURBULENCE
AT LARGE REYNOLDS AND PECLET NUMBERS

HIMADRI PAI MAZUMDAR *
Dept. of Appl. Math.,
Twente Univ. of Technology,
Enschede, THE NETHERLANDS

Abstract
When fluctuating temperature field is considered to be super imposed on a general
field of eddy turbulence, the early period decay phenomena in regard to velocity, tem-
perature and velocity-temperature are guided by three dynamical equations that are
obtained here in a straightforward manner. The equations so obtained are simplified
for the case of homogeneous turbulence and subsequently for the case of homogeneous
and isotropic turbulence.

§ 1. Introduction
The study of the behaviour of a turbulent scalar field e.g. temperature,
concentration etc. superimposed on a turbulent velocity field is essential
from the view point of turbulent mixing. Due to this, the extension of
the theories propounded for the turbulent velocity field to the case of
turbulent scalar fields are often desireable. Obukhoff [1] and Corrsin [2]
have studied the small scale structure of the fluctuating scalar field with
the help of Kolmogoroff's universal equilibrium hypothesis. O'Brien
and Francis [3] presented the dynamical consequences of the quasi-
normality approximation (cf. Millionshtchikov, [4, 5]) which states that
the fourth-order moments are related to the second-order moments as
in a normal distribution when applied to the behaviour of a scalar field.
studied the fluctuating temperature field and compared his results with
those of Corrsin [2]. Codreanu [8] obtained the equation for the spec-
trum of the scalar quantity using the method proposed by Malfliet [9]

* Present adress: Institut für stromungslehre und Gasdynamik. Graz Technical
University, Graz, Austria.
in his study of turbulent velocity field. In most of the investigations both the turbulent velocity field and the turbulent scalar field are assumed statistically homogeneous and isotropic. Kistler, O'Brien and Corrsin [10] obtained an isotropic temperature field superimposed on an isotropic velocity field by introducing a grid with heated bars in their experimental investigation. The present investigation is aimed at deriving the early-period decay equations for general type of turbulence visualised by superimposing a scalar field e.g. the temperature field on an incompressible velocity field. The approach is phenomenological in that we have considered the region where the variations of the mean temperature and the mean velocity may be neglected because the transportation of the thermal energy from place to place is very rapid. Its is assumed throughout the analysis that the observer moves with the mean velocity.

§ 2. Dynamical equations

Under the assumptions made above the relevant equations pertaining to the point \(P(x, t) \) are reducible to the forms

\[
\frac{\partial \theta}{\partial t} + \frac{\partial \theta u_i}{\partial x_i} = \chi \nabla_x^2 \theta
\]

(2.1)

\[
\frac{\partial u_i}{\partial t} + \frac{\partial}{\partial x_i} u_i u_i = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + v \nabla^2 u_i
\]

(2.2)

where \(\theta \) is the temperature fluctuation; \(\chi = \alpha/\rho C_p \); \(\alpha \) the coefficient of thermal conductivity; \(\rho \) the density; \(C_p \) the specific heat at constant pressure; \(u_i \) the fluctuating velocity component; \(v \) the kinematic viscosity; \(x = \{x_1, x_2, x_3\} \);

\[
\nabla_x^2 = \frac{\partial}{\partial x_1^2} + \frac{\partial}{\partial x_2^2} + \frac{\partial}{\partial x_3^2}
\]

The continuity condition pertaining to the point \(P(x, t) \) viz.,

\[
\frac{\partial u_i}{\partial x_i} = 0
\]

(2.3)

has been included in (2.1) and (2.2).

The equation for the temperature fluctuation \(\theta' \) at the point \(P'(x', t) \) similar to that for \(\theta \) in (2.1) may be written as

\[
\frac{\partial \theta'}{\partial t} + \frac{\partial \theta' u'_m}{\partial x'_m} = \chi \nabla_x^2 \theta'
\]

(2.4)
ON THE DECAY PROCESS OF TURBULENCE

where

\[x' = \{x'_1, x'_2, x'_3\} \quad \text{and} \quad \nabla^2_{x'} = \frac{\partial^2}{\partial x'_{1}^2} + \frac{\partial^2}{\partial x'_{2}^2} + \frac{\partial^2}{\partial x'_{3}^2} \]

Multiplying (2.1) by \(\theta' \) and (2.4) by \(\theta \), adding the two equations, and on averaging we obtain

\[\frac{\partial}{\partial t} \overline{\theta \theta'} + \frac{\partial}{\partial x'_i} \overline{\theta u'_i \theta'} + \frac{\partial}{\partial x'_m} \overline{\theta u'_m \theta'} = \chi (\nabla^2_{x'} + \nabla^2_{x'}) \overline{\theta \theta'} \quad (2.5) \]

In terms of Correlation tensors, (2.5) can be rewritten as

\[\frac{\partial}{\partial t} F_{\theta, \theta} + \frac{\partial}{\partial x'_1} F_{\theta_1, \theta} + \frac{\partial}{\partial x'_m} F_{\theta, \theta_m} = \chi (\nabla^2_{x'} + \nabla^2_{x'}) F_{\theta, \theta} \quad (2.6) \]

where

\[\overline{\theta \theta'} = F_{\theta, \theta}(x, x', t), \quad \overline{\theta u'_i \theta'} = F_{\theta_1, \theta}(x, x', t), \quad \overline{\theta u'_m \theta'} = F_{\theta, \theta_m}(x, x', t) \]

Using continuity condition for the point \(P''(x'', t) \), the equation for the velocity fluctuation \(u''_k \) at that point can be written as

\[\frac{\partial u''_k}{\partial t} + \frac{\partial}{\partial x''_n} u''_k u''_n = - \frac{\partial}{\partial x''_k} \omega'' + \nu \nabla^2_{x''} u''_k \quad (2.7) \]

where \(\omega'' = p'' | \rho; p'' \) the fluctuating part of pressure at \(P''(x'', t) \);

\[x'' = \{x''_1, x''_2, x''_3\}; \quad \nabla^2_{x''} = \frac{\partial^2}{\partial x''_{1}^2} + \frac{\partial^2}{\partial x''_{2}^2} + \frac{\partial^2}{\partial x''_{3}^2} \]

Now multiplying (2.1) by \(\theta' u''_k \), (2.4) by \(\theta u''_k \), (2.7) by \(\theta \theta' \) and adding, we obtain, on averaging

\[\frac{\partial}{\partial t} \overline{\theta \theta' u''_k} + \frac{\partial}{\partial x'_i} (\overline{\theta u'_i \theta' u''_k}) + \frac{\partial}{\partial x'_m} \overline{\theta u'_m \theta' u''_k} + \]

\[+ \frac{\partial}{\partial x''_n} \overline{u''_k u''_n \theta \theta'} = - \frac{\partial}{\partial x''_k} \omega'' \overline{\theta \theta'} + \{\chi (\nabla^2_{x'} + \nabla^2_{x'}) + \nu \nabla^2_{x''}\} \overline{\theta \theta' u''_k} \quad (2.8) \]

Using tensor notations, (2.8) can be rewritten as
\[
\frac{\partial}{\partial t} F_{\theta,\theta,k} + \frac{\partial}{\partial x_l} F_{\theta_1,\theta,k} + \frac{\partial}{\partial x_m} F_{\theta,\theta_m,k} + \frac{\partial}{\partial x_n} F_{\theta,\theta,n,k} =
\]
\[
= - \frac{\partial}{\partial x'_k} P_{\theta,\theta,0} + \{\chi(\nabla^2_x + \nabla^2_x) + v\nabla^2_x\} F_{\theta,\theta,k}
\]

where
\[
\theta \theta' u''_k = F_{\theta,\theta,k}(x, x', x'', t);
\]
\[
\theta u'_1 \theta' u''_k = F_{\theta_1,\theta,k}(x, x', x'', t);
\]
\[
\theta' \theta'_m \theta''_k = F_{\theta,\theta_m,k}(x, x', x'', t);
\]
\[
\omega'' \theta'' = P_{\theta,\theta,0}(x, x', x'', t)
\]

Taking \(\partial/\partial x''_k\) of (2.7) and using the continuity condition at \(P'(x'', t)\) we have
\[
\frac{\partial}{\partial x''_k} \frac{\partial}{\partial x''_n} u''_k u''_n = - \frac{\partial^2}{\partial x''_p \partial x''_p} \omega''
\]

Multiplying (2.10) by \(\theta \theta'\) and on averaging we obtain
\[
\frac{\partial}{\partial x''_k} \frac{\partial}{\partial x''_n} u''_k u''_n \theta'' = - \frac{\partial^2}{\partial x''_p \partial x''_p} \omega'' \theta''
\]

In tensor notations this relation is
\[
\frac{\partial}{\partial x''_k} \frac{\partial}{\partial x''_n} F_{\theta,\theta,\theta,k}(x, x', x'', t) =
\]
\[
= - \frac{\partial^2}{\partial x''_p \partial x''_p} P_{\theta,\theta,0}(x, x', x'', t)
\]

Let us introduce the Fourier transforms of two point correlations that appear in (2.5) as
\[
\psi_{\theta,\theta}(K, K', t) = \frac{1}{(2\pi)^6} \int \int F_{\theta,\theta}(x, x', t) \exp(i[K \cdot x + K' \cdot x']) \, dx \, dx',
\]
\[
\Psi_{\theta_1,\theta}(K, K', t) = \frac{i}{(2\pi)^6} \int \int F_{\theta_1,\theta}(x, x', t) \exp(i(K \cdot x + K' \cdot x')) \, dx \, dx',
\]
\[
\psi_{\theta,\theta_m}(K, K', t) = \frac{i}{(2\pi)^6} \int \int F_{\theta,\theta_m}(x, x', t) \exp(i[K \cdot x + K' \cdot x']) \, dx \, dx',
\]

(2.12)
Accordingly, the Fourier inverses of the above relations are

\[
F_{\theta,\theta}(x, x', t) = \iiint \psi_{\theta,\theta}(K, K', t) \exp(-i[K \cdot x + K' \cdot x']) dK dK' = \int \int \psi_{\theta,\theta}(K, K', t) \exp(-i[K \cdot x + K' \cdot x']) dK dK',
\]

\[
F_{\theta,\theta}(x, x', t) = \iiint \psi_{\theta,\theta}(K, K', t) \exp(-i[K \cdot x + K' \cdot x']) dK dK' = \int \int \psi_{\theta,\theta}(K, K', t) \exp(-i[K \cdot x + K' \cdot x']) dK dK',
\]

\[
F_{\theta,\theta}(x, x', t) = \iiint \psi_{\theta,\theta}(K, K', t) \exp(-i[K \cdot x + K' \cdot x']) dK dK' = \int \int \psi_{\theta,\theta}(K, K', t) \exp(-i[K \cdot x + K' \cdot x']) dK dK',
\]

(2.12)

It is to be noted that the integrations in (2.12) are performed over the whole of \(x, x'\)-spaces and their respective volume elements are

\[
dx = dx_1 \, dx_2 \, dx_3 \quad \text{and} \quad dx' = dx_1' \, dx_2' \, dx_3'
\]

Obviously the integration in (2.13) are performed over the whole of \(K, K'\)-spaces and their respective volume elements are

\[
dK = dK_1 \, dK_2 \, dK_3 \quad \text{and} \quad dK' = dK'_1 \, dK'_2 \, dK'_3
\]

Similarly, the Fourier transforms of three point correlation tensors that appear in (2.9) may be introduced as

\[
\psi_{\theta,\theta,k}(K, K', K'' , t) = \frac{i}{(2\pi)^9} \iiint F_{\theta,\theta,k}(x, x', x'', t) \cdot
\exp(i[K \cdot x + K' \cdot x' + K'' \cdot x'']) dx \, dx' \, dx''
\]

(2.14)

\[
\psi_{\theta,\theta,k}(K, K', K'' , t) = \frac{1}{(2\pi)^9} \iiint F_{\theta,\theta,k}(x, x', x'', t) \cdot
\exp(i[K \cdot x + K' \cdot x' + K'' \cdot x'']) dx \, dx' \, dx''
\]

(2.15)

and two other similar relations for \(\psi_{\theta,\theta,k} \) and \(\psi_{\theta,\theta,k} \).

Following the same procedure we further introduce

\[
\tau_{\theta,\theta,k}(K, K', K'' , t) = \frac{1}{(2\pi)^9} \iiint P_{\theta,\theta,k}(x, x', x'', t) \cdot
\exp(i[K \cdot x + K' \cdot x' + K'' \cdot x'']) dx \, dx' \, dx''
\]

(2.16)

The inverse Fourier transforms of the above relations are

\[
F_{\theta,\theta,k}(x, x', x'', t) = -i \iiint \psi_{\theta,\theta,k}(K, K', K'', t) \cdot
\exp(-i[K \cdot x + K' \cdot x' + K'' \cdot x'']) dK dK' dK''
\]

(2.17)
\(F_{\theta, \theta, \theta}(x, x', x'', t) = \int \int \psi_{\theta, \theta, \theta}(K, K', K'', t) \cdot \exp(-i[K \cdot x + K' \cdot x' + K'' \cdot x'']) dK dK' dK'' \) \hspace{1cm} (2.18)

with two other similar expressions for \(F_{\theta, 0m, \theta} \) and \(F_{\theta, \theta, kn} \) and the relation

\[P_{\theta, \theta, 0}(x, x', x'', t) = \int \int \pi_{\theta, \theta, 0}(K, K', K'', t) \cdot \exp(-i[K \cdot x + K' \cdot x' + K'' \cdot x'']) dK dK' dK'' \] \hspace{1cm} (2.19)

Using the relations given in (2.13), (2.6) can be written in the transformed space as

\[\frac{\partial}{\partial t} \psi_{\theta, \theta}(K, K', t) = K t \psi_{\theta, \theta}(K, K', t) + K' \psi_{\theta, \theta}(K, K', t) - \chi(K^2 + K'^2) \psi_{\theta, \theta}(K, K', t) \] \hspace{1cm} (2.20)

Similarly, taking help of the relations (2.17) to (2.19), the equations (2.9) and (2.11) can be rewritten in the wave number space as

\[\frac{\partial}{\partial t} \psi_{\theta, \theta, k}(K, K', K'', t) + K t \psi_{\theta, \theta, k}(K, K', K'', t) + \] \[+ K' \psi_{\theta, \theta, k}(K, K', K'', t) + K'' \psi_{\theta, \theta, k}(K, K', K'', t) - \] \[- \{\chi(K^2 + K'^2) + \nu K''^2\} \psi_{\theta, \theta, k}(K, K', K'', t) \] \hspace{1cm} (2.21)

and

\[\frac{K'' K''}{K''^2} \psi_{\theta, \theta, n}(K, K', K'', t) = -K'' \pi_{\theta, \theta, 0}(K, K', K'', t) \] \hspace{1cm} (2.22)

Substituting (2.22) in (2.21) we obtain

\[\frac{\partial}{\partial t} \psi_{\theta, \theta, k}(K, K', K'', t) + K t \psi_{\theta, \theta, k}(K, K', K'', t) + \] \[+ K' \psi_{\theta, \theta, k}(K, K', K'', t) + K'' \psi_{\theta, \theta, k}(K, K', K'', t) - \] \[- \frac{K'' K''}{K''^2} \psi_{\theta, \theta, n}(K, K', K'', t) = -\chi(K^2 + K'^2) + \nu K''^2 \psi_{\theta, \theta, k}(K, K', K'', t) \] \hspace{1cm} (2.23)

Let us consider the case when both Reynolds and Peclet numbers are
very large, so that the molecular effects are negligible (cf. Panchev, [11]).
Under such circumstances we may put \(\chi = \nu = 0 \) and the equations (2.20) and (2.23) are reduced respectively to the forms

\[
\frac{\partial}{\partial t} \psi_{\theta, 0}(K, K', t) = K_i \psi_{\theta, 0}(K, K', t) + K_m \psi_{\theta, m}(K, K', t)
\] (2.24)

and

\[
\frac{\partial}{\partial t} \psi_{\theta, 0, k}(K, K', K'', t) = - K_i \psi_{\theta, 0, k}(K, K', K'', t) - K_m \psi_{\theta, 0, m}(K, K', K'', t) +
\]

\[
\frac{K_m^2 K_n^2}{K_{n}^{2}} \psi_{\theta, 0, m}(K, K', K'', t)
\] (2.25)

We now consider a few important relations that can be easily proved following Ghosh [12] for use in the subsequent analysis.

The triple correlation \(\bar{\partial \theta'} u''_k \) formed of the two temperature fluctuations pertaining to the points \(P, P'\) and one velocity component pertaining to the point \(P''\), and its Fourier transform \(\psi_{\theta, 0, k}(K, K', K'', t) \) is being reconsidered as follows.

When the point \(P''\) coincides with the point \(P \) or in the alternative \(P''\) coincides with the point \(P'\), we respectively obtain the relations,

\[
\int \psi_{\theta, 0, k}(K - K'', K', K'', t) \, dK'' = \psi_{\theta, 0, k}(K, K', t)
\]

and

\[
\int \psi_{\theta, 0, k}(K, K' - K'', K'', t) \, dK'' = \psi_{\theta, 0, k}(K, K', t)
\] (2.26)

Let us consider the velocity component \(u''_i \) at a fourth point \(P'''(x'', t) \) and form the quadruple correlation \(\bar{\partial \theta'} u''_k u''_l \) in wave number is as usual denoted by \(\psi_{\theta, 0, k, l}(K, K', K'', K'''', t) \). The Fourier transform of \(\psi_{\theta, 0, k, l}(x, x', x'', x'''', t) \) in wave number is as usual denoted by \(\psi_{\theta, 0, k, l}(K, K', K'', K'''', t) \).

The quasi-normality hypothesis as required may be expressed in wave number space by the relation

\[
\psi_{\theta, 0, k, l}(K, K', K'', K'''', t) = \psi_{\theta, 0}(K, K', t) \psi_{k, l}(K'', K'''', t) +
\]

\[
+ \psi_{0, k}(K, K'', t) \psi_{0, l}(K', K'''', t) + \psi_{0, l}(K, K'''', t) \psi_{0, k}(K', K'', t)
\] (2.27)

Equation (2.27) may be rewritten when \(P'''\) coincides with \(P \) as
\[\psi_{\theta, l, o}(K, K', K'', t) = \int \psi_{\theta, o}(K - K'', K', t) \psi_{l, l}(K'', K''', t) dK'' + \\
+ \int \psi_{\theta, l}(K - K'', K', t) \psi_{o, l}(K', K''', t) dK'' + \psi_{\theta, o}(K', K'', t) \cdot \psi_{\theta, l}(K, t) \]
(2.28)

Similar relations for \(\psi_{\theta, \theta, l, o}(K, K', K'', t) \), when \(P'' \) coincides with \(P'' \) and for \(\psi_{\theta, \theta, l, o}(K, K', K'', t) \) when \(P'' \) coincides with \(P' \) may be easily obtained. Asymptotic form of (2.28) when in addition to the merging of \(P'' \) with \(P, P'' \) also coincides with \(P' \) may be written as

\[\psi_{\theta, \theta, o}(K, K', t) = \int \int [\psi_{\theta, o}(K - K'', K' - K'', t) \psi_{l, l}(K'', K''', t) + \\
+ \psi_{\theta, l}(K - K'', K', t) \psi_{o, l}(K' - K'', K''', t)] dK'' dK''' + \\
+ \psi_{\theta, o}(K, t) \psi_{\theta, o}(K', t) \]
(2.29)

Employing equation (2.25) and the relations (2.26) to (2.29), we derive two expressions for

\[\frac{\partial}{\partial t} \psi_{\theta, l, o}(K, K', t) \quad \text{and} \quad \frac{\partial}{\partial t} \psi_{\theta, o, o}(K, K', t) \]

By taking \(\partial / \partial t \) of (2.24) we substitute the expressions for

\[\frac{\partial}{\partial t} \psi_{\theta, l, o}(K, K', t) \quad \text{and} \quad \frac{\partial}{\partial t} \psi_{\theta, o, o}(K, K', t) \]

to obtain an equation guiding the early period decay process as

\[\frac{\partial^2}{\partial t^2} \psi_{\theta, o}(K, K', t) = A_1(K, K', t) + A_2(K, K', t) \]
(2.30)

where

\[A_1(K, K', t) = -2K_1K'_m \int \int \left[\psi_{\theta, o}(K - K'', K' - K'', t) \psi_{l, l}(K'', K''', t) + \\
+ \psi_{\theta, m}(K - K'', K''', t) \psi_{o, l}(K' - K'', K''', t) \right] dK'' dK''' - \\
- \int K_i(K_t - K'_t) \left[\int \left\{ \psi_{\theta, o}(K - K'' - K''', K', t) \psi_{l, l}(K'', K''', t) + \\
+ \psi_{\theta, l}(K - K'' - K''', K', t) \psi_{o, l}(K'', K''', t) \right\} dK'' \right] dK''' \]
ON THE DECAY PROCESS OF TURBULENCE 579

\[- \int K_t K'_n \left[\frac{\partial}{\partial t} - \frac{K'_r K''_r}{K''^2} \right] \left[\int \{ \psi_{\theta, r}(K - K'' - K''', t) \psi_{\theta, s}(K', K''', t) + \psi_{\theta, s}(K - K''', t) \psi_{\theta, r}(K', K''', t) \} \, dK'' \right] \, dK''' - \]

\[- \int K'_m(K'_s - K''_s) \left(\frac{K''_m K''_r}{K''^2} \right) \left[\int \{ \psi_{\theta, s}(K, K'' - K''', t) \psi_{\theta, m}(K''', t) + \psi_{\theta, m}(K, K''', t) \psi_{\theta, s}(K, K'' - K''', t) \} \, dK'' \right] \, dK''' - \]

\[+ \psi_{\theta, s}(K, K''', t) \psi_{\theta, r}(K' - K'' - K''', t) \psi_{\theta, r}(K', K''', t) \, dK'' \]

\[\cdot (K' - K''', t) + \]

\[\frac{1}{2} \int K''_m K''_s \left[\delta_{mr} - \frac{K''_m K''_r}{K''^2} \right] \left[\int \{ \psi_{\theta, r}(K, K'' - K''', t) \psi_{\theta, r}(K', K''', t) + \psi_{\theta, r}(K, K''', t) \psi_{\theta, r}(K', K'' - K''', t) \} \, dK'' \right] \, dK''' \]

(2.30')

and

\[A_2(K, K', t) = -2K_t K'_m [\psi_{\theta, l}(K, t) \psi_{\theta, m}(K', t)] - \]

\[- \int K_t(K_t - K'_t) [\psi_{\theta, l}(K', K''', t) \psi_{\theta, l}(K - K''', t)] \, dK'' - \]

\[- \int K'_t K''_n \left[\delta_{lr} - \frac{K''_t K''_r}{K''^2} \right] [\psi_{\theta, n}(K'''', t) \psi_{\theta, s}(K - K'''', K', t)] \, dK'' - \]

\[- \int K'_m(K'_s - K''_s) [\psi_{\theta, s}(K' - K''', t) \psi_{\theta, m}(K, K''', t)] \, dK'' - \]

\[- \int K''_m K''_s \left[\delta_{mr} - \frac{K''_m K''_r}{K''^2} \right] [\psi_{\theta, r}(K''', t) \psi_{\theta, r}(K, K' - K''', t)] \, dK'' - \]

(2.30'')

A similar procedure is followed to obtain the early-period decay equation for the spectrum \(\psi_{\theta,j}(K, K', t) \) corresponding to the correlation \(\overline{\partial u_j(x, x', t)} \) as

\[\frac{\partial^2}{\partial t^2} \psi_{\theta,j}(K, K', t) = B_1(K, K', t) + B_2(K, K', t) \]

(2.31)

where
\[B_1(K, K', t) = 2K_1K_m' \left[\frac{K_j'K_q'}{K'^2} - \delta_{jq} \right] \int \int \int \left[\psi_{0,q}(K - K'', K' - K', t) \cdot \psi_{m,t}(K''', t) + \psi_{q,m}(K - K'', K'', t) \cdot \psi_{t,0}(K', t) + \psi_{t,q}(K' - K'', K'', t) \cdot \psi_{0,m}(K''', t) \right] \, \, dK'' \, dK'''}

\[\cdot \int K_l(K_t - K''') \left[\int \left(\psi_{0,q}(K - K''', K' - K', t) \psi_{m,t}(K''', t) \right) + \psi_{m,t}(K - K''', K'', t) \psi_{0,q}(K''', t) \right] \, dK'''' \]

\[+ \psi_{q,r}(K - K'', K''', t) \psi_{s,n}(K', t) \psi_{r,m}(K - K'', K''', t) \psi_{m,t}(K''', t) \]

\[+ \psi_{q,r}(K' - K'', K''', t) \psi_{s,n}(K', t) \psi_{r,m}(K - K'', K''', t) \psi_{m,t}(K''', t) \]

\[+ \psi_{q,r}(K' - K'', K''', t) \psi_{s,n}(K', t) \psi_{r,m}(K - K'', K''', t) \psi_{m,t}(K''', t) \]

\[\cdot \int \left(K_q' - K_q'' \right) \left(K_j'' - K_j' \right) \left(K_q'' - K_q' \right) \left(K_j'' - K_j' \right) \, dK''' \]

\[= 2K_1K_m' \left[\frac{K_j'K_q'}{K'^2} - \delta_{jq} \right] \psi_{0,q}(K, t) \psi_{q,m}(K', t) \]

\[- \int K_l(K_t - K''') \left[\int \left(\psi_{0,q}(K' - K'', K', t) \psi_{m,t}(K''', t) \right) \psi_{0,q}(K - K'', t) \right] \, dK'' \]

\[+ \int \left(K_lK_m'' \left[\frac{K_j'K_q'}{K'^2} - \delta_{jq} \right] \psi_{0,q}(K - K'', K', t) \psi_{q,m}(K', t) \right) \, dK'' + \]

(2.31')

and

\[B_2(K, K', t) = 2K_1K_m' \left[\frac{K_j'K_q'}{K'^2} - \delta_{jq} \right] \psi_{0,q}(K, t) \psi_{q,m}(K', t) \]

\[- \int K_l(K_t - K''') \left[\int \psi_{0,q}(K' - K'', K', t) \psi_{m,t}(K''', t) \right] \, dK'' \]

\[+ \int \left(K_lK_m'' \left[\frac{K_j'K_q'}{K'^2} - \delta_{jq} \right] \psi_{0,q}(K - K'', K', t) \psi_{q,m}(K', t) \right) \, dK'' + \]
ON THE DECAY PROCESS OF TURBULENCE

\[+ \int \left(\left(K'_s - K''_s \right) \left[\frac{(K'_q - K''_q)(K'_r - K''_r)}{(K' - K'')^2} - \delta_{qr} \right] K'_m \left[\delta_{jq} - \frac{K'_j K'_q}{K'^2} \right] \right) \text{d}K'' + \]

\[\cdot \psi_{\theta, m}(K, K'', t) \psi_{rs}(K' - K'', t) \text{d}K'' + \]

\[+ \int \left(\left(K''_s \left[\frac{K''_m K''_n}{K''^2} - \delta_{mn} \right] K'_m \left[\delta_{jq} - \frac{K'_j K'_q}{K'^2} \right] \right) \psi_{\theta, q}(K, K' - K'', t) \right) \cdot \]

\[\psi_{m}(K'', t) \text{d}K'' \]

(2.31)

The equations (2.30) and (2.31) along with the equation derived by Ghosh [12] for the spectrum \(\psi_{i,j}(K, K', t) \).

[Corresponding to the correlation \(u_i u_j(x, x', t) \)]

\[\frac{\partial^2}{\partial t^2} \psi_{i,j}(K, K', t) = I_1(K, K', t) + I_2(K, K', t) \]

(2.32)

form a complete set of equations depicting the early-period decay process of a general type of turbulence.

§ 3. Reduction of equations for the case of homogeneous isotropic turbulence

a) Case of homogeneous turbulence

The equations obtained in the last section are simplified firstly for the case of homogeneous turbulence and subsequently for the case of homogeneous and isotropic turbulence. It is known that in homogeneous turbulence the correlation functions \(u_i u_j, \vartheta u_j^2 \) and \(\vartheta \vartheta^2 \) formed of the physical entities pertaining to the points \(P(x, t) \) and \(P'(x', t) \) are not separately dependent on \(x \) and \(x' \) but only on the separation vector \(\xi \equiv x' - x \). The implicit dependence on \(t \) is of course remaining unchanged. So, we may introduce three dimensional Dirac-delta function of the form \(\delta(K + K') \) [cf. Ghosh [12]] for the reduction of (2.30) to (2.32) to the case of homogeneous turbulence. Before integration over the whole of \(k, k' \)-spaces the functions of the types \(\psi_{\theta, \theta}(K, K', t) \), \(\psi_{\theta, j}(K, K', t) \) and \(\psi_{i,j}(K, K', t) \) etc. appearing in (2.30) to (2.32) are to be replaced respectively by

\[\psi_{\theta, \theta}(K, K', t) \delta(K + K'), \psi_{\theta, j}(K, K', t) \delta(K + K') \]

and \(\psi_{i,j}(K, K', t) \delta(K + K') \) etc.
Taking this into consideration, we obtain after usual calculation the reduced versions of equations (2.30) and (2.31) in the case of homogeneous turbulence as

\[
\frac{\partial^2}{\partial t^2} \int \psi_{\theta,o}(K, -K, t) \, dK =
\]

\[
= 2 \int K^{iv}_r K^{iv}_r \{ \psi_{\theta,o}(K, -K, t) \psi_{m,i}(-K', K', t) +
\]

\[
+ \psi_{\theta,m}(K', -K', t) \psi_{\theta,i}(-K, K, t) \} \, dK \, dK' -
\]

\[
- \int K^{iv}_r \{ \psi_{\theta,o}(K, -K, t) \psi_{1,t}(-K', K', t) +
\]

\[
+ \psi_{\theta,t}(K', -K', t) \psi_{\theta,i}(-K, K, t) \} \, dK \, dK' -
\]

\[
- \int \left(\delta_{tr} - \frac{K^{iv}_r K^{iv}_r}{K^{iv}_r} \right) \{ \psi_{\theta,r}(-K', K', t) \psi_{\theta,n}(-K, K, t) +
\]

\[
+ \psi_{\theta,n}(-K', K', t) \psi_{\theta,r}(-K, K, t) \} \, dK \, dK' -
\]

\[
- \int K^{iv}_m K^{iv}_m \{ \psi_{\theta,o}(K, -K, t) \psi_{m,s}(K', -K', t) +
\]

\[
+ \psi_{\theta,s}(K, -K, t) \psi_{\theta,m}(-K', K', t) \} \, dK \, dK' -
\]

\[
- \int \left(\delta_{sr} - \frac{K^{iv}_m K^{iv}_m}{K^{iv}_r} \right) \{ \psi_{\theta,s}(-K, K, t) \psi_{\theta,r}(-K', K', t) +
\]

\[
+ \psi_{\theta,r}(-K, K, t) \psi_{\theta,s}(-K', K', t) \} \, dK \, dK' \quad (3.1)
\]

and

\[
\frac{\partial^2}{\partial t^2} \int \psi_{\theta,i}(K, -K, t) \, dK =
\]

\[
= - \int K^{iv}_l K^{iv}_l \{ \psi_{\theta,i}(K, -K, t) \psi_{1,t}(-K', K', t) +
\]

\[
+ \psi_{\theta,t}(K', -K', t) \psi_{\theta,i}(-K, K, t) \} \, dK \, dK' -
\]

\[
- \int 2 K^{iv}_l K^{iv}_m \left[\frac{K^{iv}_r K^{iv}_r}{K^{iv}_r} - \delta_{jq} \right] \{ \psi_{\theta,q}(K, -K, t) \psi_{m,i}(-K', K', t) +
\]

\[
+ \psi_{\theta,m}(K', -K', t) \psi_{q,i}(-K, K, t) \} \, dK \, dK' +
\]
ON THE DECAY PROCESS OF TURBULENCE

\[+ \int \int K_i K_n \left[\frac{K^r_{i} K^r_{n}}{K^{iv}_{i} K^{iv}_{n}} - \delta_{ir} \right] \{ \psi_{u,r}(-K', K', t) \} \psi_{j,u}(-K, K, t) + \]

\[+ \psi_{u,n}(-K', K', t) \psi_{j,r}(-K, K, t) \} dK dK' + \]

\[+ \int \int K_s^{iv} \left[\frac{K^r_{s} K^r_{m}}{K^{iv}_{s} K^{iv}_{m}} - \delta_{qs} \right] K_m \left[\delta_{jq} - \frac{K_j K_q}{K^2} \right] \{ \psi_{u,r}(-K, K, t) \} \]

\[\cdot \psi_{m,s}(K', -K', t) + \psi_{u,s}(K, -K, t) \psi_{r,s}(-K', K', t) \} dK dK' + \]

\[+ \int \int K_s^{iv} \left[\frac{K^r_{s} K^r_{n}}{K^{iv}_{s} K^{iv}_{n}} - \delta_{nm} \right] K_m \left[\delta_{jq} - \frac{K_j K_q}{K^2} \right] \{ \psi_{u,s}(-K, K, t) \} \]

\[\cdot \psi_{m,n}(K', -K', t) + \psi_{u,n}(-K, K, t) \psi_{r,n}(-K', K', t) \} dK dK' \] (3.2)

where \(K^{iv} = K + K' \).

The reduced form of (2.32) in the case of homogeneous turbulence is

\[\frac{\partial^2}{\partial t^2} \int \psi_{i,j}(K, -K, t) dK = \]

\[= 2 \int \int \left[\delta_{is} - \frac{K^{iv}_{i} K^{iv}_{s}}{K^{iv}_{s}} \right] K^{iv}_{m} \left[\delta_{jq} - \frac{K^{iv}_{j} K^{iv}_{q}}{K^{iv}_{j}} \right] \{ \psi_{s,q}(-K, -K, t) \} \]

\[\cdot \psi_{m,i}(K', -K', t) + \psi_{s,m}(K, -K, t) \psi_{j,s}(-K', K', t) \} dK dK' + \]

\[+ \int \int \left[\delta_{is} - \frac{K^{iv}_{i} K^{iv}_{s}}{K^{iv}_{s}} \right] K^{iv}_{i} \left[\delta_{jq} - \frac{K^{iv}_{j} K^{iv}_{q}}{K^{iv}_{j}} \right] \{ \psi_{s,j}(-K', -K', t) \} \]

\[\cdot \psi_{i,s}(K', -K', t) + \psi_{s,i}(K', -K', t) \psi_{j,i}(-K, K', t) \} dK dK' + \]

\[+ \int \int \left[\delta_{is} - \frac{K^{iv}_{i} K^{iv}_{s}}{K^{iv}_{s}} \right] K^{iv}_{n} \left[\delta_{jq} - \frac{K^{iv}_{j} K^{iv}_{q}}{K^{iv}_{j}} \right] \{ \psi_{s,r}(-K', -K', t) \} \]

\[\cdot \psi_{r,n}(K', -K', t) + \psi_{s,n}(-K', -K', t) \psi_{j,n}(-K, K', t) \} dK dK' + \]

\[+ \int \int \left[\delta_{is} - \frac{K^{iv}_{i} K^{iv}_{s}}{K^{iv}_{s}} \right] K^{iv}_{m} \left[\delta_{jq} - \frac{K^{iv}_{j} K^{iv}_{q}}{K^{iv}_{j}} \right] \{ \psi_{s,t}(-K', -K', t) \} \]

\[\cdot \psi_{m,t}(K', -K', t) + \psi_{s,t}(K, -K, t) \psi_{j,t}(-K', K', t) \} dK dK' + \]

\[+ \int \int \left[\delta_{is} - \frac{K^{iv}_{i} K^{iv}_{s}}{K^{iv}_{s}} \right] K^{iv}_{q} \left[\delta_{jq} - \frac{K^{iv}_{j} K^{iv}_{q}}{K^{iv}_{j}} \right] \{ \psi_{s,p}(-K', -K', t) \} \]

\[\cdot \psi_{p,m}(K', -K', t) + \psi_{s,m}(-K', -K', t) \psi_{j,m}(-K, K', t) \} dK dK' + \]

\[+ \int \int \left[\delta_{is} - \frac{K^{iv}_{i} K^{iv}_{s}}{K^{iv}_{s}} \right] K^{iv}_{n} \left[\delta_{jq} - \frac{K^{iv}_{j} K^{iv}_{q}}{K^{iv}_{j}} \right] \{ \psi_{s,q}(-K', -K', t) \} \]

\[\cdot \psi_{q,n}(K', -K', t) + \psi_{s,n}(-K', -K', t) \psi_{j,n}(-K, K', t) \} dK dK' \] (3.3)

[cf. Ghosh [12]].
It is to be noticed that $A_2(K, K', t)$, $B_2(K, K', t)$ and $I_2(K, K', t)$ appearing respectively in (2.30), (2.31) and (2.32) have got no contributions in case of homogeneous turbulence since they disappear when requisite integrals are computed.

b) Case of homogeneous and isotropic turbulence

We know that the turbulence is statistically homogeneous and isotropic if the turbulence field characteristics are independent of choice of origin of the frame of reference and all sorts of proper and improper rotations. In such case, the correlation tensors of the form $\overline{\theta u_j}$ can be found to vanish identically. So we need simplify equations (2.30) and (2.32) for the case of homogeneous and isotropic turbulence. To obtain results in a neat form, we multiply (2.30) by K_z and follow the same procedure as before and obtain

$$\frac{\partial^2}{\partial t^2} \int K^2 \psi_{\theta,0}(K, -K, t) \, dK =$$

$$= \int 2K^2K_i^{\prime}K_m^{\prime} \psi_{\theta,0}(K, -K, t) \psi_{m,i}(-K', K', t) \, dK \, dK' -$$

$$- \int K^2K_i^{\prime}K_m^{\prime} \psi_{\theta,0}(K, -K, t) \psi_{1,i}(-K', K', t) \, dK \, dK' -$$

$$- \int K^2K_i^{\prime}K_m^{\prime} \psi_{\theta,0}(K, -K, t) \psi_{m,i}(K', -K', t) \, dK \, dK'$$

(3.4)

We now introduce the usual isotropic forms for the spectrum tensors $\psi_{\theta,0}(K, -K, t)$ and $\psi_{m,i}(-K', K', t)$ as

$$\psi_{\theta,0}(K, -K, t) = \frac{1}{4\pi K^2} E_{00}(K, t)$$

(3.5)

and

$$\psi_{m,i}(-K', K', t) = \frac{F(K', t)}{4\pi K'^2} \left\{ \delta_{mt} - \frac{K_mK'_t}{K'^2} \right\}$$

(3.6)

where $E_{00}(K, t)$ and $F(K', t)$ are respectively thermal energy spectrum and kinetic energy spectrum. Using (3.5), (3.6) and expressions similar to (3.6) for the second rank spectrum tensors appearing in (3.4), we deduce from (3.4) an equation of the form,
\[
\frac{\partial^2}{\partial t^2} \int_0^\infty K^2 E_{00}(K, t) \, dK = \\
= \int_0^\infty \int_0^1 - \frac{Q}{4K^\gamma} \left\{ K^{iv^2} - K^2 \right\} E_{00}(K, t) F(K', t) \, dK \, dK' \, d\mu
\]
(3.7)

where the space integral \(dK\) has been replaced by the line integral \(4\pi K^2 \, dK\) and the multiple integral \(dK \, dK'\) has been replaced by \(4\pi K^2 \, dK \cdot 2\pi K^\gamma \, dK' \, d\mu\), \(\mu\) being the cosine of the angle between \(k\) & \(k'\) and \(Q\) is a symmetric form given by

\[
Q = K^4 + K'^4 + K^{iv^4} - 2K^2K'^2 - 2K'^2K^iv^2 - 2K^{iv^2}K^2
\]
(3.8)

After integrations, (3.7) is reducible to the simple form

\[
\frac{\partial^2}{\partial t^2} \int_0^\infty K^2 E_{00}(K, t) \, dK = \frac{4}{3} \int_0^\infty K^2 E_{00}(K, t) \, dK \int_0^\infty K^2 F(K, t) \, dK
\]
(3.9)

which depicts the early-period decay phenomenon for the thermal energy \(E_{00}(K, t)\) in isotropic turbulence field.

Equation (3.9) is the same as the standard decay equation derived for a scalar field in Statistical Fluid Mechanics, Vol. 2 (P 288, equation 19.61) by A. S. Monin & A. M. Yaglom [13].

In the similar manner the early-period decay equation for the kinetic energy spectrum is obtained as

\[
\frac{\partial^2}{\partial t^2} \int_0^\infty 2K^2 F(K, t) \, dK = \frac{4}{3} \left[\int_0^\infty K^2 F(K, t) \, dK \right]^2
\]
(3.10)

[cf. Reid & Proudman [14], Tatsumi [15], Ghosh [12]].

Acknowledgements

The author is grateful to Prof. K. M. Ghosh for suggesting the problem and for constant encouragement throughout the progress of the work. He also thanks Professor Ambarish Ghosh and Prof. dr. ir. P. J. Zandbergen for stimulating discussions on this problem.

Received 13 September 1976
REFERENCES