Model Reduction for Efficient Time-Integration of Planar Non-Linear Flexible Multibody Models

S.E. Boer*, D. ten Hoopen*, R.G.K.M. Aarts*, W.B.J. Hakvoort*#, J.B. Jonker*

* Faculty of Engineering Technology
University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands
s.e.boer@utwente.nl

Demcon Advanced Mechatronics
Zutphenstraat 25, 7575 EJ Oldenzaal, The Netherlands

ABSTRACT

A reduction method is proposed for efficient time-integration of compliant mechanism models that undergo large deflections. Of particular importance for the modelling of this class of mechanisms is the accurate description of geometric non-linearities, as stiffness characteristics can change significantly during deflection. A finite element based flexible multibody approach is used to describe the compliant mechanism in terms of independent coordinates. Geometric transfer functions are applied to express the configuration and deformed state in terms of the independent coordinates. The modelling of large deflections requires using a sufficient number of finite elements to ensure that deformations remain small in a co-rotational context. Increasing the number of elements, increases, besides the number of degrees of freedom, the largest eigenfrequency in the model. This reduces the allowable step size in explicit time-integrator methods.

For the proposed reduction method, we aim to suppress the unwanted high frequency modes to increase the allowable step size. This is accomplished by first choosing, where possible, coordinates that remain small during simulation as independent coordinates. Such coordinates are well suited to be reduced using linear projection methods such as modal projection for suppressing the high frequency modes. The configuration and deformed state of the mechanism is subsequently determined with the geometric transfer functions. Consequently, a significant increase in the allowable step size is realized, while retaining the geometric non-linear effects that are contained in the geometric transfer functions.

The effectiveness of the method is demonstrated by two planar examples: a compliant straight guidance that undergoes large deflections and a flexible manipulator.

1 INTRODUCTION

Compliant mechanisms with flexure based hinges are often utilized in high precision manipulator devices for their deterministic static and dynamic behaviour. In this paper, we consider compliant mechanisms that undergo large deflections. The analysis for design and control of such devices, relies on computational efficient models that are capable of capturing the relevant dynamic and compliant characteristics over the full range of motion. This requires the sound inclusion of geometric non-linear effects.

In [1] we discuss a modelling approach for the analysis and simulation of multibody systems with flexible components where an entire multibody system is modelled as the assembly of non-linear finite elements. For each element a fixed number of deformation modes are defined with associated deformation coordinates that are invariant for arbitrary rigid body motion. Typical flexible members of compliant mechanisms are wire and sheets flexures. These flexures may be considered as one-dimensional structures which can be correctly modelled by flexible beam elements. Though, a rather large large number of flexible beam elements may be needed to obtain a model that correctly captures the geometric non-linear effects for large deformations. Consequently, high frequency modes are introduced in the model that greatly deteriorate the computational efficiency of explicit integrators for the time-integration of the non-linear equations of motion.

For linear mechanical systems, these higher frequency modes can be removed by using model reduction techniques that project the dynamics onto a lower dimensional subspace while preserving the dominant dynamical behaviour. Research on model reduction techniques applied to non-linear flexible multibody
systems can be separated into two categories: component and system level model reduction. System level model reduction generally has a large impact on the computational time of simulations, whereas component level reduction techniques are employed for the efficient modelling of complex-shaped components [3, 5, 10, 11]. The adaptive modal integration (AMI) method introduced by Aarts and Jonker [2] and the global modal parameterization (GMP) method introduced by Bruls et. al. [4] are examples of system level model reduction techniques. Both methods separate the motion of the mechanism in a non-linear nominal rigid body motion and a configuration dependent elastic motion part. The AMI method is applied to a set of non-linear equations of motion expressed as ordinary differential equations (ODE) for a set of independent coordinates, as in [1]. By using locally linearized models, a set of linear time-varying ODE’s is obtained for the elastic motion. With modal reduction techniques, the order of these equations is reduced. The GMP method is applied to a general set of differential algebraic equations (DAE). By combining linearized models with the constraint equations and applying modal reduction techniques, also a cheaper to solve set of ODE’s is obtained for the elastic motion. This makes the GMP method more generally applicable as the non-linear equations of motion of most flexible multibody formulations are described in terms of DAE’s. However, both methods suffer from the same drawback: they assume that the elastic deformations remain small with respect to the rigid body motion, making them less suited to reduce models describing compliant mechanisms that undergo large deflections.

For this reason, we aim to reduce the non-linear equations of motion of a multibody system with flexible components expressed as ODE’s for a set of independent coordinates [1]. This approach has been implemented in the SPACAR software [7]. Geometric transfer functions are used to express the configuration and deformation state of the mechanism as explicit functions of these independent coordinates. In the proposed reduction method, the number of independent coordinates is reduced by imposing linear relations between them. To that end independent coordinates are selected which remain small during simulation and therefore suitable to be reduced using linear projection methods. The reduction of independent coordinates effectively suppresses the excitation of high frequency modes while the geometric non-linear effects are retained in the geometric transfer functions. This makes the approach suitable for reduction of compliant mechanisms that undergo large deflections.

The effectiveness of the method is demonstrated by two planar examples: a compliant straight guidance that undergoes large deflections and a flexible manipulator to show its applicability to a more general class of mechanisms.

2 FINITE ELEMENT MODELLING

A brief introduction is given on the finite element representation used to model the compliant mechanism and flexible manipulator considered in this paper. Then, using the concept of geometric transfer functions, we derive the equations of motion in terms of independent generalized coordinates. Finally, the linearized equations of motion are presented which are needed for modal analysis.

2.1 Finite element representation

In the presented finite element method, a compliant mechanism or a flexible manipulator is modelled as an assembly of finite elements interconnected by joint elements which can be hinge elements or a subassembly of flexible beam elements that represent a flexible joint. The location of each element is described relative to a fixed inertial coordinate system by a set of nodal coordinates $x^{(k)}$, valid for large displacements and rotations. Some coordinates may be Cartesian coordinates of the end nodes, while others describe the orientation of orthogonal base vectors or triads, rigidly attached to the element nodes. The superscript k is added to show that a specific element k is considered. With respect to some reference configuration of the element, the instantaneous values of the nodal coordinates represent a fixed number of deformation modes for the element. The deformation modes are specified by a set of deformation coordinates $\varepsilon^{(k)}$ that are invariant for arbitrary motion of the element as a rigid body. The number of deformation coordinates is equal to the number of nodal coordinates minus the number of degrees of freedom of the element as a rigid body. The components of the vector of deformation coordinates $\varepsilon^{(k)}$ can be expressed as analytical functions of the vector of nodal coordinates $x^{(k)}$. In this way we can define for each element k a vector function $\varepsilon^{(k)} = \mathcal{D}^{(k)}(x^{(k)})$.

As a first example, the deformation functions $\mathcal{D}^{(k)}$ of the planar beam element are presented. As nodal coordinates we have four Cartesian coordinates (x^p, y^p), (x^q, y^q) describing the nodal positions of the beam element in the inertial reference frame and two rotation angles φ^p and φ^q that describe the orientation of the nodes with respect to the initial undeformed orientation of the element given by the angle β_0. Hence the vector of nodal coordinates is then

$$\mathbf{x}^{(k)}_{\text{beam}} = \begin{bmatrix} x^p & \varphi^p & y^p & \varphi^q \\ \end{bmatrix}^T = \begin{bmatrix} x^p, \ y^p, \ \varphi^p \ & \ x^q, \ y^q, \ \varphi^q \end{bmatrix}^T \tag{1}$$

The number of degrees of freedom of the element as a rigid body is three, which gives rise to three deformation coordinates. In addition to the deformation coordinate $\varepsilon^{(k)}_1$ representing the elongation of the element, two deformation coordinates $\varepsilon^{(k)}_2$ and $\varepsilon^{(k)}_3$, associated with the bending deformation of the beam element, can be defined [8]:

- **Elongation:**
 \[\varepsilon^{(k)}_1 = \mathcal{D}^{(k)}_{\text{beam}}(\mathbf{x}^{(k)}_{\text{beam}}) = l^{(k)} - l_0^{(k)} + \frac{1}{30l_0^{(k)}} \left(2(\varepsilon^{(k)}_2)^2 + 2(\varepsilon^{(k)}_3)^2 \right), \]

- **Bending:**
 \[\varepsilon^{(k)}_2 = \mathcal{D}^{(k)}_{\text{beam}}(\mathbf{x}^{(k)}_{\text{beam}}) = \frac{l_0^{(k)}}{l^{(k)}} \left((x^q - x^p) \sin (\varphi^p + \beta_0) - (y^q - y^p) \cos (\varphi^p + \beta_0) \right), \]
 \[\varepsilon^{(k)}_3 = \mathcal{D}^{(k)}_{\text{beam}}(\mathbf{x}^{(k)}_{\text{beam}}) = -\frac{l_0^{(k)}}{l^{(k)}} \left((x^q - x^p) \sin (\varphi^q + \beta_0) - (y^q - y^p) \cos (\varphi^q + \beta_0) \right), \tag{2} \]

where $l^{(k)} = \|\mathbf{r}^q - \mathbf{r}^p\|$ and $l_0^{(k)}$ is the reference length of the element. Note that in the expression for the elongation $\varepsilon^{(k)}_1$, second order geometric terms are included representing additional shortening of the beam axis caused by bending [12]. The deformation coordinates in Equation (2) possess the proper invariance with respect to rigid body motions of the beam element.

The second example is the planar hinge element which can be used to describe the relative angle between two beam elements. The vector of nodal coordinates is

$$\mathbf{x}^{(k)}_{\text{hinge}} = [\varphi^p, \ \varphi^q]^T \tag{3},$$

where p and q are the nodes at both sides of the hinge. The deformation coordinate is the relative rotation angle $\varepsilon^{(k)}_1$ defined as

$$\varepsilon^{(k)}_1 = \mathcal{D}^{(k)}_{\text{hinge}}(\mathbf{x}^{(k)}_{\text{hinge}}) = \varphi^q - \varphi^p. \tag{4}$$

For a description of deformation functions of spatial beam and hinge elements the reader is referred to [6, 8].

2.2 Equations of Motion

A compliant mechanism or flexible manipulator can be built up with finite elements by letting them have nodal points in common. The assemblage of finite elements is realized by defining a vector \mathbf{x} of nodal coordinates for the entire mechanism. The deformation functions of the elements can be described in terms of the components of the vector \mathbf{x} yielding the non-linear vector function

$$\varepsilon = \mathcal{D}(\mathbf{x}) \tag{5}$$

which represents the basic equations for the kinematic analysis. Kinematic constraints can be introduced by putting conditions on the nodal coordinates \mathbf{x} as well as by imposing conditions on the deformation coordinates ε which are all assumed to be holonomic. For instance, rigidity of the elements can be enforced by imposing zero conditions on the subset of deformation coordinates associated with these elements, denoted by $\varepsilon^{(0)} = \mathcal{D}^{(0)}(\mathbf{x}) = 0$. An important notion in the kinematic and dynamic analysis of mechanisms is that of degrees of freedom. The number of kinematic degrees of freedom is the smallest number of coordinates that describe, together with the kinematic constraints, the configuration of the mechanism. We call them independent generalized coordinates which can be relative deformation coordinates, denoted by $\varepsilon^{(m)}$, or absolute nodal coordinates, denoted by $\mathbf{x}^{(m)}$. In this paper we choose to use only the deformation coordinates as independent generalized coordinates. The objective of kinematic analysis is then to solve Equation (5)
for the vector of independent generalized coordinates \(q = \varepsilon^{(m)} \). The solution is expressed by means of geometric transfer functions \(F^{(x)} \) and \(F^{(e)} \) as
\[
\dot{x} = F^{(x)}(q), \quad \varepsilon = F^{(e)}(q).
\] (6)

The nodal velocities \(\dot{x} \) and accelerations \(\ddot{x} \) can be computed from (6) as
\[
\dot{x} = \frac{\partial F^{(x)}}{\partial q} \dot{q} = F^{(x)} \dot{q},
\] (7a)
\[
\dddot{x} = \left(\frac{\partial^2 F^{(x)}}{\partial q^2} \ddot{q} \right) + \left(\frac{\partial F^{(x)}}{\partial \dot{q}} \dot{q} \right) = \left(F^{(x)} \dot{q} \right) \dddot{q} + F^{(x)} \dddot{q}.
\] (7b)

Here the subscript notation ‘,’ \(q' \) is used to denote partial differentiation with respect to the vector of independent coordinates \(q \). The geometric transfer functions \(F^{(x)} \) and \(F^{(e)} \) and their derivatives are determined numerically in an iterative way [6].

The inertia properties of the concentrated and distributed mass of the elements are described with the aid of lumped and consistent mass matrices [6]. Let \(M(x) \) be the global mass matrix, obtained by assembling the lumped and consistent element mass matrices, and let \(f(x, \dot{x}, t) \) be the vector of external nodal forces, including gravitational forces and the velocity dependent inertia forces. The loading state of each element is described by a vector of stress resultants. They are collected in the assembled vector \(\sigma \) which is dual to the vector of deformation coordinates \(\varepsilon \). According to the principle of virtual work we obtain for the equations of motion of the mechanism
\[
\delta x^T (f - M \ddot{x}) = \delta \varepsilon^T \sigma
\] (8)
for all virtual variations \(\delta x \) and \(\delta \varepsilon \) which satisfy the instantaneous kinematic constraints
\[
\delta x = F_q^{(x)} \delta q, \quad \delta \varepsilon = F_q^{(e)} \delta q.
\] (9)

Substituting Equations (7) and (9) in Equation (8) gives
\[
\delta q^T M \ddot{q} = \delta q^T \left(F_q^{(x)\text{T}} \left(f - M \left(F_{qq}^{(x)} \dot{q} \right) \right) - F_q^{(e)\text{T}} \sigma \right),
\] (10)
with
\[
M = F_q^{(x)\text{T}} M F_q^{(e)}.
\] (11)

Since the components of the vector \(\delta q \) are independent, we obtain the equations of motion
\[
M \dddot{q} = F_q^{(x)\text{T}} \left(f - M \left(F_{qq}^{(x)} \dot{q} \right) \right) - F_q^{(e)\text{T}} \sigma.
\] (12)

2.3 Linearized Equations of Motion in a Steady State Configuration

Given the non-linear equations of motion in Equation (12), consider now small perturbations around the nominal trajectory \((q_0, \dot{q}_0, \ddot{q}_0) \) such that the actual variables are of the form
\[
q = q_0 + \delta q, \quad \dot{q} = \dot{q}_0 + \delta \dot{q}, \quad \ddot{q} = \ddot{q}_0 + \delta \ddot{q},
\] (13)
where the prefix \(\delta \) denotes a perturbation and should not be confused with the virtual variation operator in Equation (8). Expanding the equations of motion (12) in their Taylor series expansion and disregarding second and higher order terms yields the linearized equations of motion [9],
\[
\dot{M} \delta \ddot{q} + [C + \dot{D}] \delta \dot{q} + [K + N + \dot{G}] \delta q = F^{(x)\text{T}} \delta f - F^{(e)\text{T}} \delta \sigma.\] (14)

Here \(C \) is the velocity sensitivity matrix, \(D \) is the damping matrix, \(K \) is the structural stiffness matrix and \(N, G \) are the dynamic stiffening and geometric stiffening matrices respectively. Furthermore, \(\delta f \) and \(\delta \sigma \) represent time-varying perturbations of nodal forces and torques and internal driving forces and torques applied to the multibody system. For the special case when the system is in a certain steady state configuration \((\dot{q}_0 = 0, \dddot{q}_0 = 0, \delta \dot{f} = 0, \delta \sigma = 0) \), we can evaluate these matrices as follows,
\[
C = 0, \quad N = 0,
\] (15a)
\[
\dot{D} = F_{qq}^{(e)} S_q F_q^{(e)}, \quad \dot{K} = F_q^{(e)\text{T}} S F_q^{(e)}
\] (15b)
\[
\dot{G} = -F_{qq}^{(e)} f + F_q^{(e)\text{T}} \sigma.
\] (15c)
where \(S, S_d \) are the stiffness and damping matrices obtained by assembling the element stiffness and damping matrices. For expressions of the matrices in Equations (15) when the system is not in a steady state, the reader is referred to [9].

3 REDUCTION OF DEGREES OF FREEDOM

The equations of motion given by Equation (12), need to be time-integrated to obtain the time response of the compliant mechanism or flexible manipulator. If high frequency modes are present in the model, explicit time-integrators require small time-steps to provide a stable solution, which reduces their computational efficiency. We will exemplify the cause of these high frequency modes and propose an approach to suppress them.

3.1 Motivation and Approach

In Figure 1, two examples are shown to illustrate the cause of the unwanted higher frequencies. In Figure 1(a) a simply supported beam is considered where we would like to accurately model the illustrated high frequency bending mode. This requires a minimum of four elements as is shown. However, the model will now also include the generally much higher frequency of the unwanted elongation mode also shown in the figure. In the second example shown in Figure 1(b), a clamped beam is considered that undergoes large deflection. For an accurate representation that captures the geometric non-linear behaviour, one element is not enough as the small deformation assumption would be violated. Therefore, more elements are necessary to ensure small deformations in a co-rotational context. This again introduces high frequency modes.

![High frequency bending mode](image1)

![High frequency elongation mode](image2)

Figure 1. Examples of models that require multiple finite elements for accurate results: describing high frequency modes of a simply supported beam (a) and large deflections of a clamped beam (b).

In both cases, the computational efficiency can be significantly increased if these unwanted high frequency modes are suppressed. For this purpose, constraint relations between the degrees of freedom of the model can be applied. In the case of the simply supported beam, the elongation mode can be suppressed by e.g. relating the elongations of the separate beam elements. In general, the constraint relations can be non-linear, i.e. configuration dependent. In this paper we investigate configuration independent linear constraint relations of the form,

\[
q = V \eta \quad \text{with} \quad \dim(q) > \dim(\eta),
\]

where the columns of the projection matrix \(V \) span the allowable motion space with associated reduced set of coordinates \(\eta \). Note that these linear constraints are only applied to the set of deformation coordinates contained in \(q \) and that the configuration and deformed state of the mechanism are subsequently determined with the non-linear geometric transfer functions of Equation (6).

We can write Equation (10) in terms of the reduced set of coordinates \(\eta \), by determining the virtual variations, and the first and second time derivative of Equation (16) and substituting the resulting expressions, yielding

\[
\delta \eta^T \bar{M}_\eta \ddot{\eta} = \delta \eta^T \left[\mathcal{F}^{(x)}_{,q} V \right]^T \left(f - M \left(\mathcal{F}^{(x)}_{,qq} V \dot{\eta} \right) V \dot{\eta} \right) - \delta \eta^T \left[\mathcal{F}^{(c)}_{,q} V \dot{\eta} \right] V \dot{\eta} - \delta \eta^T \left[\mathcal{F}^{(c)}_{,q} V \dot{\eta} \right] \sigma,
\]

with

\[
\bar{M}_\eta = \left[\mathcal{F}^{(x)}_{,q} V \right]^T M \left[\mathcal{F}^{(x)}_{,q} V \right].
\]
The components of $\delta \eta$ are now independent. Therefore, we obtain for the reduced equations of motion

$$
\bar{M}_\eta \ddot{\eta} = \left[\mathcal{F}_{q}^{(x)} V \right]^T \left(f - M \left(\mathcal{F}_{\eta}^{(x)} V \dot{\eta} \right) V \dot{\eta} \right) - \left[\mathcal{F}_{q}^{(x)} V \right]^T \sigma.
$$

(18)

This leaves the determination of the projection matrix V. We investigate two approaches: a projection using a modal basis, and a method where we determine the modeshapes in a variety of configurations after which the dominant contributions are obtained by a singular value decomposition (SVD) analysis.

3.2 Modal Basis

For determining a modal basis to suppress the unwanted higher frequency modes, we first partition Equation (16) as follows

$$
\begin{bmatrix} q_l \\ q_s \end{bmatrix} = \begin{bmatrix} V_l & V_s \end{bmatrix} \begin{bmatrix} \eta_l \\ \eta_s \end{bmatrix},
$$

(19)

where the subscript l denotes coordinates that can undergo large rotations such as the relative angle of a hinge, and the subscript s denotes coordinates that remain small during simulation such as the deformation coordinates of the beam element. The reason for this partitioning is that usually these deformation coordinates show quite distinct behaviour in relation to a modal analysis. The large rotations in q_l typically result in highly non-linear behaviour that cannot be adequately described by a reduced set of coordinates using a linear projection. Therefore, it is assumed that there is no coupling between the two type of coordinates and modal reduction is only applied to the q_s part. More specifically, the submatrix V_l is chosen to be the identity matrix such that $q_l = \eta_l$. The submatrix V_s is determined by prescribing $q_l = 0$ after which the eigenfrequencies and eigenmodes are obtained by solving the eigenvalue problem

$$
\left([\bar{K}_s + \bar{G}_s] - \omega_i^2 \bar{M}_s \right) v_i = 0,
$$

(20)

in the initial configuration for a subset of the linearized equations of motion (14). Here the subscript s indicates the part of the system matrices associated with q_s and ω_i is the ith normalized eigenmode v_i that is collected in the ith column of the submatrix V_s. Model order reduction is achieved by omitting the unwanted high frequency modes in V_s.

This last step is however not trivial for non-linear systems, where in general the eigenmodes are configuration dependent. This is especially evident in compliant mechanisms that undergo large deflections. To cope with this non-linear behaviour, some of the higher frequency eigenmodes can be kept in V_s. Though, choosing which modes to keep is not a trivial task.

3.3 SVD-Modal Basis

A more systematic approach to determine a projection base that is adequate in the operating range of the mechanism is outlined by the following procedure:

- In the working range of the mechanism, we determine in n equidistant steady state reference configurations the linearized equations of motion (14) and obtain a modal basis as previously described.
- In steady state reference configuration i with $i = 1 \ldots n$, we retain the first r modes that should be accurately described.
- The modes are weighted by their eigenfrequencies as follows,

$$
Q^{(i)} = V_s^{(i)} W^{(i)} \quad \text{with} \quad W^{(i)} = \begin{bmatrix} \omega_1^{−a} \\ \vdots \\ \omega_r^{−a} \end{bmatrix}
$$

(21)

where $Q^{(i)}$ is the weighted set of modes for the ith configuration and a is the weight parameter that scales the weighting where $a = 0$ results in no weighting.
• The weighted set of modes for the \(n \) reference configurations are collected in the matrix \(Q \) to which an SVD analysis is applied. This results in a matrix \(\Sigma \) with singular values on its diagonal and the matrix \(V_s \) with singular vectors.

• The singular vectors with large corresponding singular values should be retained in \(V_s \) for the reduction of coordinates as in Equation (19).

The weighting by the parameter \(a \) in the third step can be used to give higher priority to the lower frequency eigenmodes in the SVD analysis.

4 EXAMPLES

Two planar examples are used to demonstrate the proposed approach. A compliant straight guidance example is included to show its effectiveness on the model reduction for compliant mechanisms that undergo large deflections. And as a second example, a flexible manipulator is considered to demonstrate the applicability of the reduction procedure to a more general class of mechanisms. In both examples an explicit fourth order variable step-size integrator is used for the integration of the equations of motion.

4.1 Compliant Straight Guidance

Consider the compliant straight guidance in Figure 2, which consists of two flexures each modelled with five flexible planar beam elements connected by a rigid intermediate body. Each beam element in the flexures allows for two bending deformations, resulting in a model with 17 degrees of freedom that all remain small in a co-rotational context. The physical properties and dimensions are given in the table next to Figure 2.

The model is excited by a force as function of time,

\[
\begin{align*}
 f(t) &= \begin{cases}
 \frac{F_{\text{max}}}{2} (1 - \cos(20\pi t)), & 0 \leq t \leq 0.1 \text{ s}, \\
 0, & t > 0.1 \text{ s},
 \end{cases}
\end{align*}
\]

where the maximal applied force \(F_{\text{max}} = 100 \text{ N} \).

We simulate the time response of the unreduced non-linear model and compute the eigenfrequencies as a function of the \(x \)-displacement of the rigid intermediate body. This simulation will serve as a benchmark for the reduced models. In Figure 3(a), the time response of the \(x \)-displacement of the rigid intermediate body is shown. Here the region between the dashed lines indicates the full range of motion of the compliant mechanism.

For the reduced models, we would like to retain the time response of the compliant straight guidance and the second and third eigenfrequencies over the full range of motion. Three reduced models are considered. First, by using the modal basis as discussed in Section 3.2, a reduced model is created with three time invariant modal modes determined in the initial configuration. The other two reduced models are obtained by using the SVD-modal basis approach of Section 3.3. Here we used ten equidistant steady state reference solutions determined over the full range of motion, in the SVD analysis. The distinction between the two SVD-modal models is in the weighting parameter of the eigenmodes for the SVD analysis, where we consider a case
with no weighting \((a = 0)\) and a case with weighting by the eigenfrequencies \((a = 1)\). In both cases it is determined from the magnitude of the singular values that 5 modes are necessary to capture the second and third eigenmodes over the full range of motion.

Figure 3(b) shows the relative differences between the unreduced and the reduced models of the time response in \(x\)-direction of the rigid intermediate body. Here the SVD-modal based models are abbreviated by \(SVDm\) followed by the number of modes and their weighting factor. All three reduced models show good agreement with the unreduced model. For the \(SVDm\) models, it is clear that by giving higher priority to the lower frequency eigenmodes by the weighting parameter \(a\), the time response error is reduced most.

In Figure 4 the second and third eigenfrequencies of the unreduced and reduced models are shown. They are computed over the full range of motion as is indicated by the region between the dashed lines of Figure 3(a). The Modal 3 model is able to correctly capture the second and third eigenfrequencies up to a deflection of approximately 0.055 m. After that, due to mode veering of previously higher frequency modes, it is not able to correctly describe the second eigenmode anymore. This is the reason why the SVD analysis for the \(SVDm\) models suggested 5 modes to be used as a reduction basis and from Figure 4 it can be concluded that indeed this gives accurate results over the full range of motion. Again we note that a slightly more accurate model is obtained when the eigenmodes are weighted by their eigenfrequencies in the SVD analysis. This shows that the geometric non-linear effects are correctly preserved in the reduced models.
The number of time-steps required by the explicit variable step-size integrator for the Modal 3, \(SVDm 5 a=0 \) and \(SVDm 5 a=1 \) are respectively 117, 216 and 198. In contrast, the unreduced model required 6436 time-steps. This illustrates a high increase in computational efficiency for the reduced models.

4.2 Flexible Manipulator

Consider the two-link flexible manipulator shown in Figure 5. This manipulator has been introduced as a benchmark by Schiehlen and Leister [13] and has been quoted in several papers. Some properties are given in the table next to the figure. Different from the original benchmark, we do not include gravity in this paper. Also, instead of prescribing the joint angles with rhematic constraints, we apply a stiff proportional controller with a gain \(k_p = 5 \cdot 10^3 \text{ Nm/rad} \), in each of the joints. The reference for the controllers are the joint angles \(\phi_1(t) \) and \(\phi_2(t) \) that are defined by third order functions of time,

\[
\phi_1(t) = -\phi_2(t) = \begin{cases}
\pi/4(-1 + 72t^3), & 0 \leq t < 1/6 \text{ s}, \\
\pi/4(-18t + 108t^2 - 144t^3), & 1/6 \leq t < 1/3 \text{ s}, \\
\pi/4(-8 + 54t - 108t^2 + 72t^3), & 1/3 \leq t < 1/2 \text{ s}, \\
\pi/4, & 1/2 \leq t.
\end{cases}
\]

![Figure 5. Planar two-link manipulator model (adapted from [13]).](image)

The motion of this manipulator has been computed with a non-linear model in which four flexible planar beam elements are used for each link. Each beam allows two bending modes yielding a model with eighteen degrees of freedom including the two large rotational degrees of freedom of the hinges. Next a reduced model is created using two modal modes determined in the initial configuration. Here the deformation coordinates in the beam elements are only reduced as they belong to the category of coordinates \(q_s \) from Equation (19). From the results in Figure 6 it is clear that the reduced model with only four degrees of freedom is able to accurately predict the tip response and the first and second eigenfrequencies. The computational time is significantly reduced, as the reduced model required only 691 time-steps for the simulation whereas the unreduced model required 44909 time-steps.

![Figure 6. Motion of the manipulator tip during 0.7 s of simulation (a) and the first (\(\omega_1 \)) and second (\(\omega_2 \)) eigenfrequencies as functions of time (b) for the reduced and unreduced models.](image)
5 CONCLUSIONS

In this paper a reduction method is proposed for the efficient time-integration of flexible multibody models. For suppressing high frequency modes, linear constraint relations are applied to the independent coordinates that remain small during simulation. Geometric non-linear effects are retained by the geometric transfer functions that describe the configuration of the mechanism in terms of the independent coordinates. The approach is demonstrated by two planar examples: a compliant straight guidance that undergoes large deflection and a flexible manipulator. In both examples it is observed that significant changes in eigenfrequencies during simulation are correctly described by the reduced models. In the case of the compliant straight guidance, mode veering of high frequency modes in a considerable deflected state occurs. To maintain accuracy for these large deflections, an SVD-modal basis is applied that is derived from an SVD analysis of normalized eigenmodes in a variety of configurations. It is shown that by weighting the eigenmodes with their eigenfrequencies in the SVD analysis, more accurate results are obtained than when no weighting is applied. A significant increase in computational efficiency is observed for the time-integration of the reduced equations of motion.

An extension of the method to spatial mechanisms is currently under investigation.

REFERENCES

