A macro scale constitutive model for TRIP steel

H.J.M. Geijselaers†∗, E.S. Perdahcıoğlu‡, A.H. van den Boogaard†

†Universiteit Twente
Enschede, the Netherlands
‡M2i Materials innovation institute
Delft, the Netherlands

Keywords: TRIP, martensitic transformation, mean-field homogenization, constitutive model.

ABSTRACT

The existence of different phases in the micro structure of TRIP steels is a consequence of its chemical composition and the heat treatment during production. Two main constituents are ferrite and austenite. The austenite phase (γ) can transform into stable martensite (α') during deformation. One of the attractive features of these steels is the fact that with slight changes in the heat treatment and/or chemical composition, a material with significantly different mechanical properties can be obtained [1].

The aim of this study is to build a model that can be used to predict the final mechanical properties based on knowledge about the constituent phases. The model is based on the Mean-Field homogenization technique for computing the stress-strain distribution into different phases [2].

The martensitic transformation is modeled as a stress-driven process [3, 4]. The transformation depends on the stress resolved in the austenite phase and is determined as a function of the mechanical driving force supplied to the material [5, 6]. The martensitic transformation involves a diffusionless change of crystal structure. This is analyzed starting from the postulate of an invariant plane (habit plane) as interface between the martensite and the parent austenite [7]. The result is a set of 24 habit plane normals n and corresponding shear vectors m. When a stress σ acts, while the transformation evolves, it supplies mechanical driving force U for the transformation.

$$U = \sigma_\gamma : (m \otimes n) = \sigma_\gamma : \frac{1}{2}(m \otimes n + n \otimes m)$$

(1)

Here σ_γ is the Cauchy stress in the austenite phase. In a polycrystalline material there are always some grains optimally oriented with respect to the local stress to maximize the mechanical driving forces. When this maximum exceeds a critical value ΔG^{cr} the transformation will start [3].

$$U^{\text{max}} = \sum \sigma_{\gamma j} \lambda_j > \Delta G^{\text{cr}}$$

(2)

where λ_j are the eigenvalues of the transformation deformation tensor in (1) and $\sigma_{\gamma j}$ are the eigenvalues of the local austenite stress tensor, both sorted in ascending order. The values of λ are material parameters, which are based on measured data. The amount of martensite formed is a function of U^{max}:

$$f_{\alpha'} = f_{\alpha'}^0 + f_\gamma^0 F(U^{\text{max}} - \Delta G^{\text{cr}})$$

(3)

where $f_{\alpha'}$ and f_γ^0 are the initial fractions of martensite and retained austenite. An analytical expression for $F(U^{\text{max}} - \Delta G^{\text{cr}})$ is obtained.
The transformation plasticity d^{TP} is calculated as [8]:

$$d^{TP} = \dot{f}\alpha\left(\frac{1}{3}\delta I + \frac{3}{2}T\frac{s_{\gamma}}{\sigma_{\gamma M}}\right)$$

(4)

where δ is the volume change, s_{γ} and $\sigma_{\gamma M}$ are the austenite deviatoric and Von Mises stress, T is the amount of shape change and can be calculated analytically.

In figure 1 results from the model are compared to measurements from [9].

References

