Surface modifications by gas plasma control osteogenic differentiation of MC3T3-E1 cells


Barradas, A.M.C. and Lachmann, K. and Hlawacek, G. and Frielink, C. and Truckenmuller, R.K. and Boerman, O.C. and Gastel, R. van and Garritsen, H.S.P. and Thomas, M. and Moroni, L. and Blitterswijk, C.A. van and Boer, J. de (2012) Surface modifications by gas plasma control osteogenic differentiation of MC3T3-E1 cells. Acta biomaterialia, 8 (8). 2969 - 2977. ISSN 1742-7061

[img] PDF
Restricted to UT campus only
: Request a copy
Abstract:Numerous studies have shown that the physicochemical properties of biomaterials can control cell activity. Cell adhesion, proliferation, differentiation as well as tissue formation in vivo can be tuned by properties such as the porosity, surface micro- and nanoscale topography and chemical composition of biomaterials. This concept is very appealing for tissue engineering since instructive properties in bioactive materials can be more economical and time efficient than traditional strategies of cell pre-differentiation in vitro prior to implantation. The biomaterial surface, which is easy to modify due to its accessibility, may provide the necessary signals to elicit a certain cellular behavior. Here, we used gas plasma technology at atmospheric pressure to modify the physicochemical properties of polylactic acid and analyzed how this influenced pre-osteoblast proliferation and differentiation. Tetramethylsilane and 3-aminopropyl-trimethoxysilane with helium as a carrier gas or a mixture of nitrogen and hydrogen were discharged to polylactic acid discs to create different surface chemical compositions, hydrophobicity and microscale topographies. Such modifications influenced protein adsorption and pre-osteoblast cell adhesion, proliferation and osteogenic differentiation. Furthermore polylactic acid treated with tetramethylsilane enhanced osteogenic differentiation compared to the other surfaces. This promising surface modification could be further explored for potential development of bone graft substitutes.
Item Type:Article
Copyright:© 2012 Elsevier
Science and Technology (TNW)
Research Group:
Link to this item:
Official URL:
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page

Metis ID: 286526