Modeling of asphalt and experiments with a discrete particles method

Share/Save/Bookmark

Ormel, T.J. and Magnanimo, V. and Huerne, H.L. ter and Luding, S. (2012) Modeling of asphalt and experiments with a discrete particles method. In: MAIREPAV7 - 7th International Conference on Maintenance and Rehabilitation of Pavements and Technological Control, 2012-08-08 - 2012-08-10, Auckland (pp. 1 - 10).

open access
[img]
Preview
PDF (paper)
573kB
[img]
Preview
PDF (powerpoint)
1MB
Abstract:Asphalt is an important road paving material. Besides an acceptable price, durability, surface conditions (like roughening and evenness), age-, weather- and traffic-induced failures and degradation are relevant aspects. In the professional road-engineering branch empirical models are used to describe the mechanical behaviour of the material and to address large-scale problems for road distress phenomena like rutting, ravelling, cracking and roughness. The mesoscopic granular nature of asphalt and the mechanics of the bitumen layer between the particles are only partly involved in this kind of approach. The discrete particle method is a modern tool that allows for arbitrary (self-)organization of the asphalt mesostructure and for rearrangements due to compaction and cyclic loading. This is of utmost importance for asphalt during the construction phase and the usage period, in forecasting the relevant distress phenomena and understand their origin on the grain-, contact-, or molecular scales. Contact models that involve visco-elasticity, plasticity, friction and roughness are state-of-the art in fields like particle technology and can now be modified for asphalt and validated experimentally on small samples. The ultimate goal is then to derive micro- and meso-based constitutive models that can be applied to model behaviour of asphalt pavements on the larger macro-scale.
Item Type:Conference or Workshop Item
Faculty:
Engineering Technology (CTW)
Research Group:
Link to this item:http://purl.utwente.nl/publications/80397
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 288231