Simulating Idiopathic Parkinson’s Disease by In Vitro and Computational Models


Heida, Tjitske and Stegenga, Jan and Lourens, Marcel and Meijer, Hil and Gils, Stephan van and Lazarov, Nikolai and Marani, Enrico (2012) Simulating Idiopathic Parkinson’s Disease by In Vitro and Computational Models. In: G.R. Naik (Ed.), Applied Biological Engineering - Principles and Practice. Intech, Croatia. ISBN 9799533073971

[img] PDF
Restricted to UT campus only

Abstract:In general there is a wide gap between experimental animal results, especially with respect to neuroanatomical data, and computational modeling. In order to be able to investigate the anatomical and functional properties of afferent and efferent connections between the different nuclei of the basal ganglia, similar studies need to be performed as described in this review for the Substantia Nigra. These studies, though very time-consuming, are essential to decide which pathways play important roles in normal functioning and therefore need to be included in modeling studies. In addition, it should be known what neuroanatomical changes take place resulting from the neurodegeneration associated with Parkinson’s disease and how they affect network behavior. For instance, the direct effects of DBS on motor control are of interest, but since DBS has a low threshold to side effects, additional non-motor pathways are expected to be involved. Including these pathways in network models may shed light on the extent and effect of stimulation. Similarly, as PPN stimulation may have a beneficial influence on gait and balance, different pathways are important regarding the different motor symptoms of Parkinson’s disease.
Item Type:Book Section
Copyright: © 2011 Intech
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page