Sparse Representations of Image Gradient Orientations for Visual Recognition and Tracking


Tzimiropoulos, Georgios and Zafeiriou, Stefanos and Pantic, Maja (2011) Sparse Representations of Image Gradient Orientations for Visual Recognition and Tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR-W 2011, 20-25 June 2011, Colorado Springs, USA (pp. pp. 26-33).

[img] PDF
Restricted to UT campus only
: Request a copy
Abstract:Recent results have shown that sparse linear representations of a query object with respect to an overcomplete basis formed by the entire gallery of objects of interest can result in powerful image-based object recognition schemes. In this paper, we propose a framework for visual recognition and tracking based on sparse representations of image gradient orientations. We show that minimal ℓ1 solutions to problems formulated with gradient orientations can be used for fast and robust object recognition even for probe objects corrupted by outliers. These solutions are obtained without the need for solving the extended problem considered in. We further show that low-dimensional embeddings generated from gradient orientations perform equally well even when probe objects are corrupted by outliers, which, in turn, results in huge computational savings. We demonstrate experimentally that, compared to the baseline method in, our formulation results in better recognition rates without the need for block processing and even with smaller number of training samples. Finally, based on our results, we also propose a robust and efficient ℓ1-based “tracking by detection” algorithm. We show experimentally that our tracker outperforms a recently proposed ℓ1-based tracking algorithm in terms of robustness, accuracy and speed.
Item Type:Conference or Workshop Item
Copyright:© 2011 IEEE
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:
Official URL:
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page