An efficient, second order method for the approximation of the Basset history force


Hinsberg, M.A.T. van and Thije Boonkkamp, J.H.M. ten and Clercx, H.J.H. (2011) An efficient, second order method for the approximation of the Basset history force. Journal of Computational Physics, 230 (4). pp. 1465-1478. ISSN 0021-9991

[img] PDF
Restricted to UT campus only
: Request a copy
Abstract:The hydrodynamic force exerted by a fluid on small isolated rigid spherical particles are usually well described by the Maxey–Riley (MR) equation. The most time-consuming contribution in the MR equation is the Basset history force which is a well-known problem for many-particle simulations in turbulence. In this paper a novel numerical approach is proposed for the computation of the Basset history force based on the use of exponential functions to approximate the tail of the Basset force kernel. Typically, this approach not only decreases the cpu time and memory requirements for the Basset force computation by more than an order of magnitude, but also increases the accuracy by an order of magnitude. The method has a temporal accuracy of $\matcal{O}(\Delta t^2)$ which is a substantial improvement compared to methods available in the literature. Furthermore, the method is partially implicit in order to increase stability of the computation. Traditional methods for the calculation of the Basset history force can influence statistical properties of the particles in isotropic turbulence, which is due to the error made by approximating the Basset force and the limited number of particles that can be tracked with classical methods. The new method turns out to provide more reliable statistical data.
Item Type:Article
Copyright:© 2011 Elsevier
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:
Official URL:
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page