Regimes of bubble volume oscillations in a pipe


Jeurissen, Roger and Wijshoff, Herman and Berg, Marc van den and Reinten, Hans and Lohse, Detlef (2011) Regimes of bubble volume oscillations in a pipe. Journal of the Acoustical Society of America, 130 (5). pp. 3220-3232. ISSN 0001-4966

[img] PDF
Restricted to UT campus only
: Request a copy
Abstract:The effect of an acoustically driven bubble on the acoustics of a liquid-filled pipe is theoretically analyzed and the dimensionless groups of the problem are identified. The different regimes of bubble volume oscillations are predicted theoretically with these dimensionless groups. Three main regimes can be identified: (1) For small bubbles and weak driving, the effect of the bubble oscillations on the acoustic field can be neglected. (2) For larger bubbles and still small driving, the bubble affects the acoustic field, but due to the small driving, a linear theory is sufficient. (3) For large bubbles and large driving, the two-way coupling between the bubble and the flow dynamics requires the solution of the full nonlinear problem. The developed theory is then applied to an air bubble in a channel of an inkjet printhead. A numerical model is developed to test the predictions of the theoretical analysis. The Rayleigh-Plesset equation is extended to include the influence of the bubble volume oscillations on the acoustic field and vice versa. This modified Rayleigh-Plesset equation is coupled to a channel acoustics calculation and a Navier-Stokes solver for the flow in the nozzle. The numerical simulations indeed confirm the predictions of the theoretical analysis
Item Type:Article
Copyright:© Acoustical Society of America
Science and Technology (TNW)
Research Group:
Link to this item:
Official URL:
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page

Metis ID: 279954