Materials development for commercial multilayer ceramic capacitors


Share/Save/Bookmark

Mikkenie, Ronald (2011) Materials development for commercial multilayer ceramic capacitors. thesis.

open access
[img]
Preview
PDF
4MB
Abstract:Electronic devices like notebooks, smart phones, GPS units, LED TVs and other
daily life applications are produced with increased functionality and complexity
from year to year. Today’s electronic devices must be equipped with new smart
electronic circuitry designs to add more functionality within a single device, while
not making them larger in size. As the electronic circuits are made of various
components, active semiconducting chips and passive components, like resistors,
capacitors and inductors, more and more components are needed per single unit.
While the number of components increases all components are subject to
miniaturization to increase the volume efficiency. As capacitors are one of the more
important passive components and every device consists of more than one hundred
capacitors, a lot of effort is put on developing smaller sized capacitors.
Capacitors can be made from a wide variety of dielectrics and the components
can have various shapes. The majority are surface mount capacitors and especially
multilayer ceramic capacitors are one of the more popular types. These multilayer
ceramic capacitors are mainly used in today’s electronic devices and these types of
capacitors are discussed in this thesis.
As the name multilayer ceramic capacitor already suggests the components are
made up of a body, in which alternating layers of dielectrics and conducting metal
electrodes are embedded. In Chapter 2 the manufacturing of multilayer ceramic
capacitors is explained in more detail. In the 1980s and 1990s the majority of
multilayer capacitors were made with expensive noble metals like palladium or
platinum. Due to the price increase of these noble metals at the end of the 20th
century, the passive component industry started to develop new dielectric materials
suitable for co-firing with less expensive noble metals like pure silver or silverpalladium
alloys. Another way to decrease metal costs is to implement base metals
like nickel and copper as electrode material. Therefore new types of dielectric
materials had to be developed in order to be co-fired with nickel or copper in a
reducing atmosphere to prevent the metals from oxidizing.
Multilayer ceramic capacitors can be made of a wide variety of materials and
depending on the electrical characteristics they are employed in different
applications. This thesis describes dielectrics, personally developed for use in
commercial multilayer capacitors, which show high stability towards temperature,
frequency and voltage in Chapter 3. These dielectrics have low or moderate
permittivity values and they are primarily used for filtering, smoothing and
temperature control applications. Chapter 3 also describes multilayer capacitors
having relatively high permittivities. These are based on barium-neodymiumtitanates
and zinc-magnesium-titanates. These materials are suitable for co-firing
with pure silver or silver-palladium alloys. It is described how to modify the
dielectric composition in order to co-fire with high silver content electrodes and
which strategy has to be followed in order to get reliable multilayer capacitors.
Furthermore, it is described how high-permittivity temperature stable capacitors
having copper electrodes can be produced. These types of dielectrics have very low
equivalent series resistance characteristics. Such capacitors can be used in high
frequency applications especially. Various multilayer capacitors with electrodes of
silver-palladium alloys, copper and nickel electrodes were made. The equivalent
series resistance characteristics were determined to compare these capacitors with
respect to their performance at high frequencies. Multilayer capacitors with the
lowest equivalent series resistances are obtained when metals having the lowest
possible bulk resistivity, like copper or silver, are selected.
The second part, Chapter 4, describes multilayer capacitors that are used for
decoupling and bypassing purposes in electronic circuitry. These capacitors consist
of dielectrics which are based on modified ferroelectric barium titanates. Typically
they have very high permittivity values. They are less stable towards temperature
changes, but they are important for their high capacitive volume efficiency. The
multilayer ceramic capacitors are already produced with low cost metals, in
particular nickel electrodes. Development is mainly focused on increasing the
capacitive volume efficiency by decreasing the dielectric layer thickness and by
maximizing the number of electrodes layers. Various strategies are described to
make high capacitance multilayer capacitors.
The dielectrics layers of these high capacitance multilayer capacitors were
already decreased down to 1 μm thickness in recent years. The grain size of the
ceramics is typically 200–250 nm and efforts are made to decrease the grain size
further, while maintaining reliable capacitor characteristics. The influence of the
applied electrical field on the dielectric layers is explained in this chapter, and a
strategy is presented how to develop new high permittivity dielectrics effectively.
The influence of raw materials properties, particle size distribution of raw materials,
and formulation on electrical properties and microstructures of the ceramics is
described, while a conventional production method is used. With an alternative
method it is possible to make ceramics having high permittivity values as well. In
that process raw materials are used, which have high concentrations of yttrium oxide
and copper oxide in the barium titanate lattice. These doped barium titanate powders
are then mixed with pure barium titanate powders, together with extra dopant
elements, to produce a new type of dielectrics.
Item Type:Thesis
Faculty:
Science and Technology (TNW)
Research Group:
Link to this item:http://purl.utwente.nl/publications/78440
Official URL:http://dx.doi.org/10.3990/1.9789036532754
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 280029