Horizontally viscous effects in a tidal basin: extending Taylor's problem


Roos, P.C. and Schuttelaars, H.M. (2009) Horizontally viscous effects in a tidal basin: extending Taylor's problem. Journal of fluid mechanics, 640 . pp. 421-439. ISSN 0022-1120

[img] PDF
Restricted to UT campus only
: Request a copy
Abstract:The classical problem of Taylor (Proc. Lond. Math. Soc., vol. 20, 1921, pp. 148–181) of Kelvin wave reflection in a semi-enclosed rectangular basin of uniform depth is extended to account for horizontally viscous effects. To this end, we add horizontally viscous terms to the hydrodynamic model (linearized depth-averaged shallow-water equations on a rotating plane, including bottom friction) and introduce a no-slip condition at the closed boundaries.
In a straight channel of infinite length, we obtain three types of wave solutions (normal modes). The first two wave types are viscous Kelvin and Poincaré modes. Compared to their inviscid counterparts, they display longitudinal boundary layers and a slight decrease in the characteristic length scales (wavelength or along-channel decay distance). For each viscous Poincaré mode, we additionally find a new mode with a nearly similar lateral structure. This third type, entirely due to viscous effects, represents evanescent waves with an along-channel decay distance bounded by the boundary-layer thickness.
The solution to the viscous Taylor problem is then written as a superposition of these normal modes: an incoming Kelvin wave and a truncated sum of reflected modes. To satisfy no slip at the lateral boundary, we apply a Galerkin method. The solution displays boundary layers, the lateral one at the basin's closed end being created by the (new) modes of the third type. Amphidromic points, in the inviscid and frictionless case located on the centreline of the basin, are now found on a line making a small angle to the longitudinal direction. Using parameter values representative for the Southern Bight of the North Sea, we finally compare the modelled and observed tide propagation in this basin.
Item Type:Article
Copyright:© 2009 Cambridge University Press
Engineering Technology (CTW)
Research Group:
Link to this item:http://purl.utwente.nl/publications/78402
Official URL:https://doi.org/10.1017/S0022112009991327
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page

Metis ID: 252291