Permuting Operations on Strings and the Distribution of Their Prime Numbers
Asveld, Peter R.J. (2011) Permuting Operations on Strings and the Distribution of Their Prime Numbers. [Report]

PDF
220kB 
Abstract:  Several ways of interleaving, as studied in theoretical computer science, and some subjects from mathematics can be modeled by lengthpreserving operations on strings, that only permute the symbol positions in strings. Each such operation X gives rise to a family n≥2} of similar permutations. We call an integer n Xprime if Xn consists of a single cycle of length n(n≥2). For some instances of X  such as shuffle, twist, operations based on the Archimedes' spiral and on the Josephus problem  we investigate the distribution of Xprimes and of the associated (ordinary) prime numbers, which leads to variations of some wellknown conjectures in number theory. [brace not closed] 
Item Type:  Report 
Faculty:  Electrical Engineering, Mathematics and Computer Science (EEMCS) 
Research Group:  
Link to this item:  http://purl.utwente.nl/publications/78281 
Export this item as:  BibTeX EndNote HTML Citation Reference Manager 
Repository Staff Only: item control page
Metis ID: 278873