Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants

Share/Save/Bookmark

Barrere, Florence and Snel, Margot M.E. and Blitterswijk van, Clemens A. and Groot de, Klaas and Layrolle, Pierre (2004) Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants. Biomaterials, 25 (14). pp. 2901-2910. ISSN 0142-9612

[img]PDF
Restricted to UT campus only
: Request a copy
1243Kb
Abstract:The nucleation and growth of a calcium phosphate (Ca-P) coating deposited on titanium implants from simulated body fluid was investigated by using atomic force microscopy (AFM) and environmental scanning electron microscopy (ESEM). Forty titanium alloy plates were assigned into two groups. One group with a smooth surface having a maximum roughness Rmax<0.10 μm (s-Ti6Al4V) and a group with a rough surface with an Rmax<0.25 μm (r-Ti6Al4V) were used. Titanium samples were immersed in SBF concentrated by five (SBF×5) from 10 min to 5 h and examined by AFM and ESEM. Scattered Ca-P deposits of approximately 15 nm in diameter appeared after only 10 min of immersion in SBF×5. These Ca-P deposits grew up to 60–100 nm after 4 h on both s- and r-Ti6Al4V substrates. With increasing immersion time, the packing of Ca-P deposits with size of tens of nanometers in diameter formed larger globules and then a continuous Ca-P film on titanium substrates. A direct contact between the Ca-P coating and the Ti6Al4V surface was observed. The Ca-P coating was composed of nanosized deposits and of an interfacial glassy matrix. This interfacial glassy matrix might ensure the adhesion between the Ca-P coating and the Ti6Al4V substrate. In the case of s-Ti6Al4V substrate, failures within this interfacial glassy matrix were observed overtime. Part of the glassy matrix remained on s-Ti6Al4V while part detached with the Ca-P film. The Ca-P coating detached from the smooth substrate, whereas the Ca-P film extended onto the whole rough titanium surface over time. In the case of r-Ti6Al4V, the Ca-P coating covered evenly the substrate after immersion in SBF×5 for 5 h. The present study suggested that the heterogeneous nucleation of Ca-P on titanium was immediate and did not depend on the Ti6Al4V surface topography. The further growth and mechanical attachment of the final Ca-P coating strongly depended on the surface, for which a rough topography was beneficial.
Item Type:Article
Copyright:© 2004 Elsevier
Faculty:
Science and Technology (TNW)
Research Group:
Link to this item:http://purl.utwente.nl/publications/76366
Official URL:http://dx.doi.org/10.1016/j.biomaterials.2003.09.063
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 223618