Disturbance Observers for Rigid Mechanical Systems: Equivalence, Stability, and Design


Schrijver, Erwin and Dijk, Johannes van (2002) Disturbance Observers for Rigid Mechanical Systems: Equivalence, Stability, and Design. Journal of Dynamic Systems, Measurement, and Control , 124 (4). pp. 539-548. ISSN 0022-0434

[img] PDF
Restricted to UT campus only
: Request a copy
Abstract:Mechanical (direct-drive) systems designed for high-speed and high-accuracy applications require control systems that eliminate the influence of disturbances like cogging forces and friction. One way to achieve additional disturbance rejection is to extend the usual (P(I)D) controller with a disturbance observer. There are two distinct ways to design, represent, and implement a disturbance observer, but in this paper it is shown that the one is a generalization of the other. A general systematic design procedure for disturbance observers that incorporates stability requirements is given. Furthermore, it is shown that a disturbance observer can be transformed into a classical feedback structure, enabling numerous well-known tools to be used for the design and analysis of disturbance observers. Using this feedback interpretation of disturbance observers, it will be shown that a disturbance observer based robot tracking controller can be constructed that is equivalent to a passivity based controller. By this equivalence not only stability proofs of the disturbance observer based controller are obtained, but it also provides more transparent controller parameter selection rules for the passivity based controller.
Item Type:Article
Copyright:© 2002 American Society of Mechanical Engineers
Engineering Technology (CTW)
Research Group:
Link to this item:http://purl.utwente.nl/publications/73890
Official URL:https://doi.org/10.1115/1.1513570
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page

Metis ID: 207783