Transient granular shock waves and upstream motion on a staircase

Share/Save/Bookmark

Weele van der, Ko and Kanellopoulos, Giorgos and Tsiavos, Christos and Meer van der, Devaraj (2009) Transient granular shock waves and upstream motion on a staircase. Physical Review E: Statistical, nonlinear, and soft matter physics, 80 (1). 011305. ISSN 1539-3755

[img]
Preview
PDF
879Kb
Abstract:A granular cluster, placed on a staircase setup, is brought into motion by vertical shaking. Molecular dynamics simulations show that the system goes through three phases. After a rapid initial breakdown of the cluster, the particle stream organizes itself in the form of a shock wave moving down the steps of the staircase. As this wave becomes diluted, it transforms into a more symmetric flow, in which the particles move not only downwards but also toward the top of the staircase. This series of events is accurately reproduced by a dynamical model in which the particle flow from step to step is modeled by a flux function. To explain the observed scaling behavior during the three stages, we study the continuum version of this model (a nonlinear partial differential equation) in three successive limiting cases. (i) The first limit gives the correct t−1/3 decay law during the rapid initial phase, (ii) the second limit reveals that the transient shock wave is of the Burgers type, with the density of the wave front decreasing as t−1/2, and (iii) the third limit shows that the eventual symmetric flow is a slow diffusive process for which the density falls off as t−1/3 again. For any finite number of compartments, the system finally reaches an equilibrium distribution with a bias toward the lower compartments. For an unbounded staircase, however, the t−1/3 decay goes on forever and the distribution becomes increasingly more symmetric as the dilution progresses.
Item Type:Article
Copyright:© 2009 The American Physical Society
Faculty:
Science and Technology (TNW)
Research Group:
Link to this item:http://purl.utwente.nl/publications/73650
Official URL:http://dx.doi.org/10.1103/PhysRevE.80.011305
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 257971