Steady shear behavior of polymerically stabilized suspensions: Experiments and lubrication based modeling

Share/Save/Bookmark

Nommensen, P.A. and Duits, M.H.G. and Ende, D. van den and Mellema, J. (1999) Steady shear behavior of polymerically stabilized suspensions: Experiments and lubrication based modeling. Physical Review E: Statistical physics, plasmas, fluids, and related interdisciplinary topics, 59 (3). pp. 3147-3154. ISSN 1063-651X

[img] PDF
Restricted to UT campus only
: Request a copy
180kB
Abstract:Flow curve measurements are presented of a suspension of polymerically stabilized monodisperse spheres, with a polymer layer thickness of 0.7 times the core radius. At low shear rates a drastic change in behavior occurs at a critical (effective) volume fraction φm. Below φm the curves show a low shear Newtonian plateau. The concentration dependence of these plateaus together with φm=0.60 indicate that the particles can be modeled as Brownian hard spheres. Above this φm the flow curves indicate plastic behavior, due to the direct contact between polymer layers of different spheres. At high shear rates the onset of Newtonian plateaus is observed with a gradual concentration dependence. The experimental high shear data are compared with model calculations, based on the dissipation due to lubrication forces treating the polymer layer as a Brinkman medium. The model we used was adapted to give a better description of the polymer layer. Fitting the experiments to obtain the permeability of the polymer layer, we found a value in the range of values expected from polymer theory. Our adapted lubrication model was also used to reanalyze experimental data for other polymerically stabilized suspensions.
Item Type:Article
Copyright:© 1999 American Physical Society
Faculty:
Science and Technology (TNW)
Research Group:
Link to this item:http://purl.utwente.nl/publications/73503
Official URL:http://dx.doi.org/10.1103/PhysRevE.59.3147
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 129013