Development of a 15 K hydrogen-based sorption cooler


Burger, J.F. and Holland, H.J. and Meijer, R.J. and Linder, M. and Brake, H.J.M. ter (2010) Development of a 15 K hydrogen-based sorption cooler. AIP Conference Proceedings, 1218 . pp. 396-403. ISSN 0094-243X

[img] PDF
Restricted to UT campus only
: Request a copy
Abstract:At the University of Twente, a 15 K hydrogen-based sorption cooler is under development, which has no moving parts and, therefore, is essentially vibration-free. Moreover, it has the potential of a very long life. Although the cooler may operate standalone, it is designed to precool a helium-based sorption cooler thats establishes 5 mW at 4.5 K, requiring a cooling power of 25 mW at the hydrogen stage. Both coolers use microporous activated carbon as the adsorption material. The combination of these two cooler stages needs a total of 5.4 W of input power and is heat sunk at two passive radiators at temperatures of about 50 K and 90 K (1.9 W and 3.5 W, respectively). We developed and built a demonstrator of the helium cooler under a previous ESA-TRP contract, and in 2008 we started a new ESA-sponsored project aiming at the development of the hydrogen stage. In the paper, the preliminary design of this hydrogen-cooler is presented, along with introductory experiments on its Joule-Thomson cold stage. © 2010 American Institute of Physics.
Item Type:Article
Copyright:© 2010 American Institute of Physics
Science and Technology (TNW)
Research Group:
Link to this item:
Official URL:
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page