Calculating scattering matrices by wave function matching


Zwierzycki, M. and Khomyakov, P.A. and Starikov, A.A. and Xia, K. and Talanana, M. and Xu, P.X. and Karpan, V.M. and Marushchenko, I. and Turek, I. and Bauer, E.W. and Brocks, G. and Kelly, P.J. (2010) Calculating scattering matrices by wave function matching. Physica Status Solidi B: Basic research, 245 (4). pp. 623-640. ISSN 0370-1972

[img] PDF
Restricted to UT campus only
: Request a copy
Abstract:The conductance of nanoscale structures can be conveniently related to their scattering properties expressed in terms of transmission and reflection coefficients. Wave function matching (WFM) is a transparent technique for calculating transmission and reflection matrices for any Hamiltonian that can be represented in tight-binding form. A first-principles Kohn–Sham Hamiltonian represented on a localized orbital basis or on a real space grid has such a form. WFM is based upon direct matching of the scattering-region wave function to the Bloch modes of ideal leads used to probe the scattering region. The purpose of this paper is to give a pedagogical introduction to WFM and present some illustrative examples of its use in practice. We briefly discuss WFM for calculating the conductance of atomic wires, using a real space grid implementation. A tight-binding muffin-tin orbital implementation very suitable for studying spin-dependent transport in layered magnetic materials is illustrated by looking at spin-dependent transmission through ideal and disordered interfaces.
Item Type:Article
Copyright:© 2008 Wiley
Science and Technology (TNW)
Research Group:
Link to this item:
Official URL:
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page

Metis ID: 248690