Measuring bubble, drop and particle sizes in multiphase systems with ultrasound

Share/Save/Bookmark

Cents, A.H.G. and Brilman, D.W.F. and Versteeg, G.F. and Wijnstra, P.J. and Regtien, P.P.L. (2004) Measuring bubble, drop and particle sizes in multiphase systems with ultrasound. AIChE Journal, 50 (11). pp. 2750-2762. ISSN 0001-1541

[img]PDF
Restricted to UT campus only
: Request a copy
203Kb
Abstract:A technique is developed for measurement of bubble, droplet and particle-size distributions in multiphase systems, based on the propagation speed and attenuation of ultrasound. The measurement of the size distribution of the dispersed phase in multiphase systems was desired to analyze the mass-transfer mechanism in gas-liquid-liquid and gas-liquid-solid systems. To obtain this information, both the ultrasonic velocity and the attenuation coefficient of tone-burst signals are determined for a large frequency range (typically 100 kHz - 100 MHz). From these parameters, the size distributions and the volume fraction of the different dispersed phases can be determined using a scattering model. It was shown that the interfacial area can be determined very accurately, however, for the exact size distribution of the gas bubbles in the used size range (1-3 mm) an independent gas holdup determination is required. Experiments were performed in gas-liquid, solid-liquid, and gas-liquid-solid systems. The results showed good agreement of the particle-size distribution compared to a commercial laser-scattering analyzer, both with and without gas bubbles present. Furthermore, a good agreement between the scattering model and the experiments was found in the systems that contained gas bubbles, but these results should be validated using for instance, a digital camera technique.
Item Type:Article
Copyright:© 2004 Wiley InterScience
Faculty:
Science and Technology (TNW)
Research Group:
Link to this item:http://purl.utwente.nl/publications/71945
Official URL:http://dx.doi.org/10.1002/aic.10203
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 226510