Functionalized Poly(α-hydroxy acid)s via Ring-Opening Polymerization: Toward Hydrophilic Polyesters with Pendant Hydroxyl Groups

Share/Save/Bookmark

Leemhuis, M. and Nostrum, F. van and Kruijtzer, J.A.W. and Zhong, Z.Y. and Breteler, M.R. ten and Dijkstra, P.J. and Feijen, J. and Hennink, W.E. (2006) Functionalized Poly(α-hydroxy acid)s via Ring-Opening Polymerization: Toward Hydrophilic Polyesters with Pendant Hydroxyl Groups. Macromolecules, 39 (10). pp. 3500-3508. ISSN 0024-9297

[img] PDF
Restricted to UT campus only
: Request a copy
143kB
Abstract:Two functionalized dilactones with protected hydroxyl groups, benzyloxymethyl methyl glycolide (4a) and benzyloxymethyl glycolide (4b), were synthesized and converted to the corresponding polyesters by ring-opening polymerization in the melt (at 110 °C using benzyl alcohol and SnOct2 as initiator and catalyst, respectively, and at 130 °C using SnOct2 as catalyst or in solution at 35 °C using ethylzinc phenolate and 2-propanol as catalyst and initiator, respectively). The obtained polymers were amorphous, with a glass transition temperature (Tg) between 15 and 45 °C. 13C NMR analysis showed that poly(4b) was perfectly alternating, owing to a regioselective ring opening, whereas poly(4a) had a random distribution of methyl and benzyloxymethyl side groups. Both 4a and 4b could be copolymerized with l-lactide. Copolymers of l-lactide with 4b showed crystallinity at 75% lactide content, whereas copolymers with 4a were amorphous at the same lactide content. Monomer 4b apparently reacts faster than lactide, resulting in composition drift and finally yielding a polymer rich in lactide and consequently in lactide blocks that are large enough to crystallize. Block copolymers were synthesized by sequential polymerization of l-lactide and 4a using ethylzinc phenolate as catalyst. Deprotection of the benzyloxymethyl groups of poly(4a) and poly(4b) gave the corresponding hydroxylated polyesters, which were amorphous and semicrystalline, respectively, according to DSC analysis.
Item Type:Article
Copyright:Elsevier
Faculty:
Science and Technology (TNW)
Research Group:
Link to this item:http://purl.utwente.nl/publications/71120
Official URL:http://dx.doi.org/10.1021/ma052128c
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 236863