Existence of Spanning and Dominating Trails and Circuits

H. J. Veldman
TWENTE UNIVERSITY OF TECHNOLOGY
ENSCHEDE, THE NETHERLANDS

ABSTRACT

Let T be a trail of a graph G. T is a spanning trail (S-trail) if T contains all vertices of G. T is a dominating trail (D-trail) if every edge of G is incident with at least one vertex of T. A circuit is a nontrivial closed trail. Sufficient conditions involving lower bounds on the degree-sum of vertices or edges are derived for graphs to have an S-trail, S-circuit, D-trail, or D-circuit. Thereby a result of Brualdi and Shanny and one mentioned by Lesniak-Foster and Williamson are improved.

1. INTRODUCTION

We use [2] for basic terminology and notations, but speak of vertices and edges instead of points and lines. Accordingly we denote the edge set of a graph G by $E(G)$.

A spanning trail, or briefly S-trail, of a graph G is a trail that contains all vertices of G. A dominating trail or D-trail of G is a trail such that every edge of G is incident with at least one vertex of the trail. A nontrivial closed trail will be called a circuit here.

In Section 2 we state a number of sufficient conditions for the existence of S-trails, S-circuits, D-trails, and D-circuits. Special cases of S-circuits (S-trails) are S-cycles (S-paths), better known as hamiltonian cycles (hamiltonian paths). The existence of hamiltonian cycles and paths has received broad attention in the literature. D-cycles and D-paths, special cases of D-circuits and D-trails, respectively, were studied in [6]. The existence of D-circuits is especially interesting in view of the following result.

Theorem A. (Harary and Nash-Williams [3]). The line graph $L(G)$ of a graph G contains a hamiltonian cycle if and only if G has a D-circuit or G is isomorphic to $K_{1,s}$ for some $s \geq 3$.
In [4] it is remarked that a slight modification in the proof of Theorem A yields the following analogous result, which forms a justification for investigating the existence of D-trails.

Theorem B. (Lesniak-Foster and Williamson [4]). The line graph \(L(G) \) of a graph \(G \) contains a hamiltonian path if and only if \(G \) has a D-trail.

By our results a theorem of Brualdi and Shanny [1] and one mentioned by Lesniak-Foster and Williamson [4] are improved.

We will need the following additional concepts, most of which are introduced in [6]. Two subgraphs \(H_1 \) and \(H_2 \) are close in \(G \) if they are disjoint and there is an edge joining a vertex of \(H_1 \) and one of \(H_2 \). If \(H_1 \) and \(H_2 \) are disjoint and not close, then \(H_1 \) and \(H_2 \) are remote. The degree of an edge \(e \) of \(G \), denoted \(\deg_G e \) or \(\deg e \) if no confusion can arise, is the number of vertices of \(G \) close to \(e \) (viewed as a subgraph of order 2). If \(T \) is an oriented trail in a graph and \(u \) and \(v \) are vertices of \(T \), then \(uTv \) denotes the longest subtrail of \(T \) from \(u \) to \(v \); \(vTu \) is the same subtrail in reverse order.

For ease of survey our results stated in Section 2 are not proved there; all proofs have been gathered in Section 3.

2. RESULTS

A well-known result in hamiltonian graph theory is the following.

Theorem C. (Ore [5]). If \(G \) is a graph with \(n \) vertices \((n \geq 3)\) such that \(\deg u + \deg v \geq n \) for every pair of nonadjacent vertices \(u \) and \(v \), then \(G \) contains an S-cycle.

Theorem C is best possible; also, the lower bound \(n \) for \(\deg u + \deg v \) cannot be decreased in order to obtain the weaker conclusion that \(G \) contains an S-circuit instead of an S-cycle. The truth of both statements is demonstrated by the graph \(K_1 + (K_1 \cup K_{n-2}) \) \((n \geq 3)\), which contains no S-circuit (and hence no S-cycle) while every pair of nonadjacent vertices has degree-sum \(n - 1 \). However, if the necessary condition \(\delta(G) \geq 2 \) is imposed, the bound can be lowered to guarantee the existence of an S-circuit.

Theorem D. (Lesniak-Foster and Williamson [4]). If \(G \) is a graph with \(n \) vertices \((n \geq 6)\) and \(\delta(G) \geq 2 \) such that \(\deg u + \deg v \geq n - 1 \) for every pair of nonadjacent vertices \(u \) and \(v \), then \(G \) contains an S-circuit.

In [6] the following analogue of Theorem C was stated.

Theorem E. (Veldman [6]). Let \(G \) be a graph with \(n \) vertices, other than a tree. If \(\deg e + \deg f \geq n - 2 \) for every pair of remote edges \(e \) and \(f \), then \(G \) contains a D-cycle.
Again, Theorem E is best possible and the lower bound \(n - 2 \) for \(\deg e + \deg f \) cannot be decreased to justify the weaker conclusion that \(G \) contains a D-circuit. To see this, subdivide in \(K_1 + (K_1 \cup K_{n-3}) \) \((n \geq 5)\) the edge incident with the vertex of degree 1 to obtain a graph without a D-circuit in which every pair of remote edges has degree-sum \(n - 3 \). Again, to guarantee the existence of a D-circuit, the bound can be lowered if a necessary condition is imposed. Let \(G \) be a graph with a D-circuit \(C \) and let

\[
D_1(G) = \{ v \in V(G) \mid \deg v = 1 \}.
\]

If \(v \) is a vertex of \(G \) with a neighbor in \(D_1(G) \), then \(v \) must be on \(C \), so that \(v \) has at least two neighbors on \(C \). In particular \(v \) has at least two neighbors of degree at least 2. Thus, if in \(G \) all vertices of degree 1 are deleted, then the remaining graph has minimum degree at least 2. Now the following result is analogous to Theorem D.

Theorem 1. If \(G \) is a graph with \(n \) vertices and \(\delta(G - D_1(G)) \geq 2 \) such that \(\deg e + \deg f \geq n - 3 \) for every pair of remote edges \(e \) and \(f \), then \(G \) contains a D-circuit.

Let \(H \) be the graph \(K_k \cup K_{n-k} \) or the graph \((K_k \cup K_{n-k}) + e \) (obtained from \(K_k \cup K_{n-k} \) by joining a vertex of \(K_k \) to a vertex of \(K_{n-k} \)), where \(n \geq 6 \) and \(3 \leq k \leq n - 3 \). Then \(\delta(H - D_1(H)) = \delta(H) \geq 2 \) and every pair of remote edges of \(H \) has degree-sum at least \(n - 4 \) while \(H \) contains no D-circuit, showing that Theorem 1 is best possible. (Note that by considering \(H \), Theorem D also is seen to be best possible).

A consequence of Theorem 1 is the following.

Corollary 2. Let \(G \) be a graph with \(n \) vertices \((n \geq 4)\) and at least one edge. If \(G \neq P_4, \ G \neq K_{1,n-1}, \) and \(\deg u + \deg v \geq n - 1 \) for every edge \(uv \) of \(G \), then \(G \) contains a D-circuit.

In view of Theorem A, Corollary 2 improves the following result of Brualdi and Shanny [1]: if \(G \) is a graph with \(n \) vertices \((n \geq 4)\) and at least one edge such that \(\deg u + \deg v \geq n \) for every edge \(uv \) of \(G \), then \(L(G) \) is hamiltonian.

The graphs used to demonstrate that Theorem 1 is best possible also show that Corollary 2 is best possible.

We now turn our attention to S- and D-trails that are not necessarily closed. Lesniak-Foster and Williamson [4] mention that the following can be verified: If \(G \) is a connected graph with \(n \) vertices \((n \geq 5)\) such that \(\deg u + \deg v \geq n - 2 \) for every pair of nonadjacent vertices \(u \) and \(v \), then \(G \) contains an S-trail. This result can be improved as follows.

Theorem 3. If \(G \) is a connected graph with \(n \) vertices \((n \geq 5)\) such that \(\deg u + \deg v + \deg w \geq n - 1 \) for every triple \(u, v, w \) of independent vertices, then \(G \) contains an S-trail.
Theorem 3 is best possible: For each \(n \geq 5 \) obtain the graph \(H_n \) from a \(K_{1,3} \) and a \(K_{n-3} \) by identifying one endvertex of \(K_{1,3} \) with a vertex of \(K_{n-3} \); \(H_n \) has no S-trail while every triple of independent vertices has degree-sum at least \(n - 2 \).

An analogous condition is sufficient for the existence of a D-trail instead of an S-trail.

Theorem 4. If \(G \) is a connected graph with \(n \) vertices \((n \geq 8) \) such that \(\deg e + \deg f + \deg g \geq n - 4 \) for every triple \(e,f,g \) of mutually remote edges, then \(G \) contains a D-trail.

For \(n \geq 8 \) the graph obtained from \(H_{n-2} \) by subdividing both edges incident with a vertex of degree 1 shows that Theorem 4 is best possible.

If \(e \) is an edge of a graph and \(u \) a vertex incident with \(e \), then \(\deg e \geq \deg u - 1 \). As a consequence, the sufficient conditions for D-trails stated in Theorems E, 1 and 4 are weaker than the corresponding analogous conditions for S-trails in Theorems C, D, and 3, respectively, in accordance with the fact that every S-trail is also a D-trail whereas the converse is not true in general.

Finally we state a sufficient condition for the existence of an S-circuit resembling the condition of Corollary 2.

Theorem 5. If \(G \) is a graph with \(n \) vertices and \(\delta(G) > 0 \) such that \(\deg u + \deg v \geq n + 1 \) for every edge \(uv \) of \(G \), then \(G \) contains an S-circuit.

Theorem 5 is seen to be best possible by considering the graph \(K_1 + (K_1 \cup K_{n-2}) (n \geq 3) \) or, for odd \(n \geq 3 \), the graph \(K_{2,n-2} \).

3. PROOFS

Proof of Theorem 1. By contradiction. Suppose \(G \) satisfies the conditions of the theorem without containing a D-circuit. Two edges \(e \) and \(f \) cannot be in different components of \(G \), since otherwise \(\deg e + \deg f \geq n - 4 \) while \(e \) and \(f \) are remote. Hence \(G \) has at most one nontrivial component and we may assume that \(G \) is connected.

By [6, Corollary 9.1], a connected graph with \(n \) vertices has a D-path if the degree-sum of every three mutually remote edges is at least \(n - 3 \). Clearly \(G \) satisfies this condition. Let \(P = v_1v_2 \cdots v_p \) be a longest D-path of \(G \), so that all neighbors of \(v_1 \) and \(v_p \) are on \(P \). Using the assumptions that \(G \) contains no D-circuit, that \(P \) is a longest D-path and that \(\delta(G - D_1(G)) \geq 2 \), it is easily shown that \(p \geq 6 \).

Put \(e = v_1v_2 \) and \(f = v_{p-1}v_p \); then \(e \) and \(f \) are remote. Assuming the contrary, e.g., \(v_2v_{p-1} \in E(G) \), the cycle \(v_2 \overline{P} v_{p-1}v_2 \) is a D-circuit of \(G \), a contradiction. Furthermore, \(v_1 \) and \(v_{p-2} \) are the only vertices of \(G \) that may be close to both \(e \)
and f: suppose $v \in V(G) - \{v_3, v_{p-2}\}$ and v is close to both e and f, e.g., vv_1 and vv_{p-1} are edges of G; then $v_1v_{p-1}Pv_1$ is a D-circuit, a contradiction.

Distinguishing three cases we will show that $\deg e + \deg f \leq n - 4$, the final contradiction.

Case 1. v_3 and f are remote and v_{p-2} and e are remote. Then every vertex of $V(G) - \{v_1, v_2, v_{p-1}, v_p\}$ is close to at most one of the edges e and f. Thus $\deg e + \deg f \leq n - 4$.

Case 2. v_3 and f are close, e.g., $v_3v_p \in E(G)$, and v_{p-2} and e are remote (or, symmetrically, v_3 and f are remote and v_{p-2} and e are close). Then certainly $\deg e + \deg f \leq n - 3$. Case 2 will be settled by proving that some vertex of $V(G) - \{v_1, v_2, v_{p-1}, v_p\}$ is close to neither of the edges e and f. Define

$$I_1 = \{i \mid 4 \leq i \leq p - 3, v_i \in E(G)\},$$
$$I_2 = \{i \mid 4 \leq i \leq p - 3, v_2v_i \in E(G)\},$$
$$I_3 = \{i \mid 4 \leq i \leq p - 3, \exists u \notin V(P): (v_2u, uv_i) \in E(G)\}.$$

We show that $I_1 \cup I_2 \cup I_3 \neq \emptyset$. Suppose $I_1 = I_2 = \emptyset$. v_1 and v_3 are nonadjacent, otherwise $v_1v_2v_3Pv_1$ would be a D-circuit of G. Thus $\deg v_1 = 1$. Since $\delta(G - D_1(G)) \geq 2$, v_2 has, next to v_3, another neighbor u of degree at least 2. Since $I_2 = \emptyset$, $v \notin V(P)$. Let u be a neighbor of u other than v_2. Since P is a D-path, u belongs to P. Using previous arguments we have that $u \notin \{v_1, v_2, v_{p-1}, v_p\}$. Also $u \notin \{v_3, v_{p-2}\}$, since otherwise $v_1v_2v_3Pv_p$ or $v_1v_2v_{p-1}Pv_pPv_{p-1}$ would be a D-path longer than P. In conclusion, $I_3 \neq \emptyset$.

Let $m = \min\{i \in I_1 \cup I_2 \cup I_3\}$, e.g., $v_m \in I_2$. Then $m \neq 4$, for otherwise $v_2v_4Pv_pv_3v_2$ would be a D-circuit. Now by definition of m the vertex v_{m-1} is not close to e. However, v_{m-1} is close to f: If, e.g., $v_{m-1}v_{p-1} \in E(G)$, then $v_2v_{m-1}Pv_{p-1}v_{m-1}v_2$ is a D-circuit. Again we conclude that $\deg e + \deg f \leq n - 4$.

Case 3. v_3 and f are close and v_{p-2} and e are close, e.g., $v_1v_{p-2} \in E(G)$ and $v_2v_{p-1} \in E(G)$. Then certainly $\deg e + \deg f \leq n - 2$. Case 3 is settled by indicating two vertices in $V(G) - \{v_1, v_2, v_{p-1}, v_p\}$ which are neither close to e nor to f. If $p = 6$, then $v_1v_4v_5v_6v_1$ is a D-circuit, so that $p \geq 7$. The vertex v_4 is close to neither of the edges e and f: If, e.g., $v_4v_k \in E(G)$, then $v_4v_Pv_{p-1}v_4v_2$ is a D-circuit; if, e.g., $v_4v_p \in E(G)$, then $v_1v_{p-2}Pv_4v_pPv_{p-1}v_2v_1$ is a D-circuit. Analogously, v_{p-3} is neither close to e nor to f. If $v_4 \neq v_{p-3}$, i.e., if $p > 7$, then $\deg e + \deg f \leq n - 4$. Now assume that $v_4 = v_{p-3}$ or, equivalently, $p = 7$. v_4 has a neighbor v outside P, otherwise $v_1v_5v_6v_3v_2v_1$ would be a D-circuit. u and e are remote: If, e.g., $v_4v \in E(G)$, then $v_2v_4v_3v_2v_1v_4v_2$ is a D-circuit. Symmetrically, v and f are remote. Hence, as in the case $p > 7$, we found two
vertices \((u_4 \text{ and } u)\) which are close to neither of the edges \(e\) and \(f\). Again it follows that \(\deg e + \deg f \leq n - 4\), completing the proof.

Proof of Corollary 2. Let \(G\) satisfy the conditions of Corollary 2 and let \(e = uv\) be an arbitrary edge of \(G\). Then

\[
\deg e \geq \max\{\deg u, \deg v\} - 1 \geq \frac{1}{2}(n - 1) - 1 = \frac{1}{2}(n - 3).
\]

It follows that every pair of edges of \(G\), and hence a fortiori every pair of remote edges, has degree-sum at least \(n - 3\). By Theorem 1 the proof is complete if \(\delta(G - D_1(G))\) is shown to be at least 2. As in the proof of Theorem 1 we may assume that \(G\) is connected. Every pair of adjacent vertices has degree-sum at least \(n - 1\), so every vertex with a neighbor in \(D_1(G)\) has degree at least \(n - 2\). Hence \(\delta(G - D_1(G)) \geq 2\) if \(|V(G - D_1(G))| \geq 4\). Since \(G \not\cong K_{1,n-1}\), \(G - D_1(G) \not\cong K_1\). It remains to be shown that \(G - D_1(G) \not\cong K_2, P_3\).

Suppose \(G - D_1(G) \cong K_2\) and let \(u\) and \(v\) be the vertices of \(G - D_1(G)\). In \(G\) both \(u\) and \(v\) are adjacent to a vertex of degree 1, otherwise \(u\) or \(v\) would be a vertex of \(D_1(G)\). Hence \(\deg_G u \geq n - 2\) and \(\deg_G v \geq n - 2\). It follows that in \(G\) both \(u\) and \(v\) are adjacent to exactly one vertex of degree 1, so that \(G \cong P_4\), contrary to assumption.

Finally suppose that \(G - D_1(G) \cong P_3\). Again both endvertices of \(G - D_1(G)\), \(u_1\) and \(u_2\), say, are adjacent in \(G\) to a vertex of degree 1. But then \(\deg_G u_i \leq n - 3\) \((i = 1, 2)\), contradicting the simultaneous conclusion that \(\deg_G u_i \geq n - 2\).

Proof of Theorem 3. By contraposition. Assume that \(G\) is a connected graph on \(n\) vertices \((n \geq 5)\) without an \(S\)-trail. We will exhibit an independent set of three vertices with degree-sum at most \(n - 2\).

Let \(T = u_1u_2\cdots u_p\) be a trail of \(G\) such that \(|V(T)|\) is maximum while \(|E(T)| \leq |E(T')|\) for every trail \(T'\) with \(|V(T')| = |V(T)|\). Since \(G\) is connected and has no \(S\)-trail, there is a vertex \(v \in V(G) - V(T)\) with at least one neighbor on \(T\). \(T\) is not a circuit; assuming the contrary and letting \(w\) be a neighbor of \(v\) on \(T\), the trail \(vwT'w\) has more vertices than \(T\), contradicting the choice of \(T\). More generally \(G\) contains no circuit \(C\) with \(V(C) \supseteq V(T)\).

\(u_1\) is not an internal vertex of \(T\), otherwise \(u_2T'u_p\) would be a trail satisfying \(|V(u_2T'u_p)| = |V(T)|\) and \(|E(u_2T'u_p)| < |E(T)|\), again a contradiction with the choice of \(T\). By the same token \(u_p\) is not an internal vertex of \(T\). Since there is no circuit of \(G\) containing all vertices of \(T\), it follows that \(u_1\) and \(u_p\) are nonadjacent. Furthermore, neither of the vertices \(u_1\) and \(u_p\) is adjacent to \(v\): If, e.g., \(uu_1 \in E(G)\), then the trail \(uu_1T'u_p\) has more vertices than \(T\). We will show that \(\deg u_1 + \deg u_p + \deg v \leq n - 2\).

Clearly, \(|V(T)| \geq 3\). If \(|V(T)| = 3\), then, since \(G\) is connected and \(|V(T)|\) is maximum, every component of \(G - V(T)\) is trivial and every vertex of \(G - V(T)\) is adjacent to \(u_2\). In that case \(G \cong K_{1,n-1}\) and \(\deg u_1 + \deg u_p + \deg v = 3 \leq n - 2\), since \(n \geq 5\). Henceforth assume that \(|V(T)| \geq 4\).
Put $H = G[\{v, u_1, u_2, u_3, u_{p-1}, u_p\}]$ and $U = V(G) - V(H)$. Every vertex of U is adjacent to at most one of the vertices u_1, u_p, v. Assuming the contrary, let u be a vertex of U which is adjacent to at least two of the vertices u_1, u_p, v (it is immaterial whether or not u belongs to T). If $u \in N(u_1) \cap N(u_p)$, then $C = uu_1 Tu_2u$ is a circuit with $V(C) \supseteq V(T)$, which is impossible. If $u \in N(u_1) \cap N(v)$, then the trail $uu_1 Tu_2u$ contradicts the choice of T; so does the trail $u_1 Tu_2u$ in case $u \in N(u_p) \cap N(u)$. Putting

$$
\sigma = \deg_H u_1 + \deg_H u_p + \deg_H v,
$$

we conclude that

$$
\deg_G u_1 + \deg_G u_p + \deg_G v \leq \sigma + |U|.
$$

The proof will be complete if it is shown that $\sigma \leq |V(H)| - 2$. We distinguish three cases.

Case 1. $u_2 = u_{p-1}$. Since $|V(T)| \geq 4$, the vertices u_3 and u_p do not coincide. Like the vertices in U, the vertex u_3 is adjacent to at most one of the vertices u_1, u_p, v. Hence, if v is not adjacent to u_2, we have $\sigma \leq 3 = |V(H)| - 2$. If v is adjacent to u_2, then u_3 is adjacent to none of the vertices u_1, u_p, v: the choice of T is contradicted by the trail $uu_3 u_1 Tu_2u$ if $u_1 u_3 \in E(G)$, by $u_1 u_2 u_3 Tu_2u$ if $u_3 u_3 \in E(G)$ and by $u_1 u_2 u_3 Tu_2u$ if $u_3 \in E(G)$. Again it follows that $\sigma \leq 3 = |V(H)| - 2$.

Case 2. $u_3 = u_{p-1}$. The vertex v is adjacent to at most one of the vertices u_2 and u_3, otherwise the trail $u_1 u_2 u_3 Tu_2u$ would contradict the choice of T. Also, at most one of the pairs u_1, u_3 and u_p, u_2 is adjacent, otherwise $u_1 u_2 Tu_3 u_2 u_1$ would be a circuit containing all vertices of T. Hence, if v is neither adjacent to u_2 nor to u_3, then $\sigma \leq 3 = |V(H)| - 2$. If $u_2 \in E(G)$ and $u_3 \notin E(G)$, then $u_1 u_3 \notin E(G)$ and $u_p u_2 \notin E(G)$. Assuming the contrary, the trails $uu_3 u_1 Tu_2u$ and $u_1 Tu_2u$ respectively, contradict the choice of T. Again it follows that $\sigma \leq 3$. This conclusion is reached analogously if $u_3 \notin E(G)$ and $u_3 \in E(G)$.

The case $u_2 = u_{p-2}$ can be handled similarly.

Case 3. $u_2 \neq u_{p-1}$ and $u_3 \neq u_{p-1}$ and $u_2 \neq u_{p-2}$. The set of edges of H incident with u_1, u_p, or v and different from $u_1 u_2$ and $u_{p-1} u_p$ is a subset of

$$
E' = \{u_1 u_3, u_1 u_{p-1}, u_2 u_p, u_3 u_p, uu_2, uu_3, uu_{p-1}\}.
$$

We show that no triple of elements of E' is a subset of $E(H)$, thereby reaching the conclusion that $\sigma \leq 4 = |V(H)| - 2$. First we reduce the number of triples to be checked by listing pairs of elements of E' that cannot be subsets of $E(H)$. If one of the pairs in the table below is assumed to be a subset of $E(H)$, a trail
T' can be indicated that contradicts the choice of T. T' may be a trail with more vertices than T or a circuit containing all vertices of T.

Assumed to be a subset of $E(H)$

\[
\begin{align*}
\{u_1, u_2, u_3, u_4\} \\
\{u_1, u_2, u_3, u_4\} \\
\{u_1, u_2, v_2\} \\
\{u_1, u_3, v_3\} \\
\{u_1, u_{p-1}, v_2, u_p\} \\
\{u_1, u_{p-1}, v_3\} \\
\{u_2, u_3, u_4\} \\
\{v_2, v_3\}
\end{align*}
\]

T' contradicting choice of T

\[
\begin{align*}
u_1, u_3, u_2, u_1 \\
u_1, u_3, u_2, u_1 \\
u_2, u_3, u_2 \\
u_3, u_2, u_1 \\
u_4, u_3, u_2, u_1 \\
u_1, u_3, u_2, u_1 \\
u_3, u_2, u_1 \\
u_1, u_3, u_2, u_1
\end{align*}
\]

There are four triples of elements of E' which contain none of the above pairs. To complete the proof, in the following table it is shown that none of these triples can be a subset of $E(H)$.

Assumed to be a subset of $E(H)$

\[
\begin{align*}
\{u_1, u_{p-1}, u_2, u_p, u_3, u_4\} \\
\{u_1, u_{p-1}, u_2, u_p, v_2\} \\
\{u_2, u_p, u_3, u_4\} \\
\{u_3, u_p, v_2, u_4\} \\
\{v_2, v_3\}
\end{align*}
\]

T' contradicting choice of T

\[
\begin{align*}
\{u_1, u_{p-1}, u_2, u_p, u_3, u_4\} \\
\{u_2, u_p, u_3, u_4\} \\
\{u_3, u_p, v_2, u_4\} \\
\{u_1, u_3, u_2, v_3\} \\
\{u_1, u_3, u_2, v_3\}
\end{align*}
\]

Outline of the proof of Theorem 4. By contraposition. Suppose G is a connected graph on n vertices $(n \geq 8)$ without a D-trail. Let $T = u_1u_2 \cdots u_p$ be a trail of G such that $|E(G - V(T))|$ is minimum while $|E(T)| \leq |E(T')|$ for every trail T' with $|E(G - V(T'))| = |E(G - V(T))|$. Since G is connected and has no D-trail, there is an edge $v_1v_2 \in E(G - V(T))$ which is close to at least one vertex of T. There is no circuit of G containing all vertices of T, otherwise one could indicate a trail T' with $E(G - V(T')) \subseteq E(G - V(T)) - \{v_1, v_2\}$, contradicting the choice of T. Moreover, as in the proof of Theorem 3, neither u_1 nor u_p is an internal vertex of T. It follows that u_1 and u_p are nonadjacent. Clearly neither of the vertices u_1 and u_p is close to the edge v_1v_2.

The vertex u_1 is adjacent to a vertex $u_0 \in V(G) - V(T)$, otherwise $T' = u_2u_3u_p$ would be a trail satisfying $|E(G - V(T'))| = |E(G - V(T))|$ and $|E(T')| < |E(T)|$, again a contradiction with the choice of T. By the same token, u_p is adjacent to a vertex $u_{p+1} \in V(G) - V(T)$. Since there is no circuit containing all vertices of T, the vertices u_0 and u_{p+1} do not coincide.

From the choice of T it follows that the independent edges u_0u_1, u_pu_{p+1} and v_1v_2 are, in fact, mutually remote. By inspection of the proof of Theorem 3 one now shows, using completely analogous arguments, that $\deg u_0u_1 + \deg u_pu_{p+1} + \deg v_1v_2 \leq n - 5$, the role of the three independent vertices u_1, u_p, v now being played by the three mutually remote edges $u_0u_1, u_pu_{p+1, v_1v_2}$.

Proof of Theorem 5. Suppose G satisfies the conditions of the theorem without containing an S-circuit. From the conditions one easily deduces that G is connected and $\delta(G) \geq 2$. It follows that G contains a cycle and thus, in particular, a circuit.

Let C be a longest circuit in G. Since C is not an S-circuit and G is connected, G has an edge uv with $u \not\in V(C)$ and $v \in V(C)$. Suppose u and v have a common neighbor w. If $uw \in E(C)$, then the circuit obtained from C by replacing the edge uw by the path vuw is longer than C, a contradiction with the choice of C. If $uw \notin E(C)$, then the circuit $vuwCv$ contradicts the choice of C. Hence u and v have no common neighbors. It follows that $\deg u + \deg v \leq n - 2 + 2 = n$, a contradiction.

Note added in proof: In [J. Graph Theory, 8 (1984), 303–307] L. Clark proves that, if G is a connected graph with $|V(G)| = n \geq 6$ and $\deg u + \deg v \geq n - 1 - p(n)$ for every edge uv of G, where $p(n)$ is 0 for n even and 1 for n odd, then $L(G)$ is hamiltonian. Via an extension of the proof of Corollary 2 one can show that Clark's result also is a corollary of Theorem 1. Moreover, the condition that G be connected can be replaced by the condition that $E(G) \neq \emptyset$.

References