On Circuits and Pancyclic Line Graphs

A. Benhocine
UNIVERSITE DU MAINE
LE MANS, FRANCE

L. Clark
UNIVERSITY OF NEW MEXICO
ALBUQUERQUE, NM

N. Köhler
GERLINGERSTRASSE 6,
D-1000 BERLIN 47

H. J. Veldman
TWENTE UNIVERSITY OF TECHNOLOGY
ENSCHERDE, THE NETHERLANDS

ABSTRACT

Clark proved that $L(G)$ is hamiltonian if G is a connected graph of order $n \geq 6$ such that $\text{deg } u + \text{deg } v \geq n - 1 - p(n)$ for every edge uv of G, where $p(n) = 0$ if n is even and $p(n) = 1$ if n is odd. Here it is shown that the bound $n - 1 - p(n)$ can be decreased to $(2n + 1)/3$ if every bridge of G is incident with a vertex of degree 1, which is a necessary condition for hamiltonicity of $L(G)$. Moreover, the conclusion that $L(G)$ is hamiltonian can be strengthened to the conclusion that $L(G)$ is pancyclic. Lesniak-Foster and Williamson proved that G contains a spanning closed trail if $\delta(G) \geq 2$ and $\text{deg } u + \text{deg } v \geq n - 1$ for every pair of nonadjacent vertices u and v. The bound $n - 1$ can be decreased to $(2n + 3)/3$ if G is connected and bridgeless, which is necessary for G to have a spanning closed trail.

1. TERMINOLOGY

We use [4] for basic terminology and notation, but speak of vertices and edges instead of points and lines. Accordingly we denote the edge set of a graph G by $E(G)$. In [7] a circuit was defined as a nontrivial closed trail. Here the following subtle variation on this definition will be more convenient. A circuit C of a graph G is a nontrivial eulerian subgraph of G. Alternatively, C is a circuit if
and only if C is a nontrivial connected subgraph such that every vertex of C has even degree in C. If C is a circuit of G, then $\beta(C)$ denotes the number of edges of G incident with at least one vertex of C. A spanning circuit, or briefly S-circuit, of a graph G is a circuit that contains all vertices of G. A dominating circuit or D-circuit of G is a circuit such that every edge of G is incident with at least one vertex of the circuit. If H is a subgraph of G, then vertices of $G - V(H)$ which are adjacent to at least one vertex of H are called neighbors of H. We denote the neighbors of $H = \{v\}$ by $N(v)$. A graph of order n is pancyclic if it contains a cycle of length i for each i with $3 \leq i \leq n$. A chord of a cycle C in G is an edge in $E(G) - E(C)$ whose ends are in C. A connected graph G is said to be almost bridgeless if every bridge of G is incident with a vertex of degree 1. If x is a real number, then $\lfloor x \rfloor$ and $\lceil x \rceil$ denote, respectively, the greatest integer smaller than or equal to x and the smallest integer greater than or equal to x.

2. DOMINATING CIRCUITS AND PANCYCLIC LINE GRAPHS

In [5] the following relation between D-circuits in graphs and hamiltonian cycles in line graphs is established.

Theorem 1. (Harary and Nash-Williams [5]). The line graph $L(G)$ of a graph G contains a hamiltonian cycle if and only if G has a D-circuit or G is isomorphic to $K_{1,s}$ for some $s \geq 3$.

In [3], Clark proved that the line graph $L(G)$ of a graph G is hamiltonian if G is connected, $|V(G)| = n \geq 6$ and $\deg u + \deg v \geq n - 1 - p(n)$ for every edge uv of G, where $p(n) = 0$ if n is even and $p(n) = 1$ if n is odd. The graphs showing that Clark's result is best possible all contain a bridge which is not incident with a vertex of degree 1. If a graph G contains a bridge uv with $\deg u \neq 1 \neq \deg v$, then the vertex of $L(G)$ corresponding to uv is a cut vertex of $L(G)$, so that $L(G)$ is nonhamiltonian. Hence a necessary condition for $L(G)$ to have a hamiltonian cycle, and for G to have a D-circuit, is that G is almost bridgeless. Using Theorem 1 we will show how Clark's bound $n - 1 - p(n)$ can be decreased if G is additionally required to be almost bridgeless. Before presenting our result we state two lemmas, the first of which is easily proved and frequently used in [2] and [3].

Lemma 2. Let G be a connected graph and C a circuit of G with maximum number of vertices. Then G contains no circuit C' satisfying $V(C') \cap V(C) \neq \emptyset \neq V(C') \cap V(G) - V(C)$ and $|E(C') \cap E(C)| \leq 1$.

Lemma 3. Let G be a connected graph, C a circuit of G with maximum number of vertices, K a component of $G - V(C)$ and u_1 and u_2 two neighbors of K on C. Then the following assertions hold.
a. u_1 and u_2 are nonadjacent.

b. If $w \in N(u_1) \cap N(u_2) - V(K)$, then none of the vertex pairs \{u_1, w\} and \{u_2, w\} has a common neighbor.

c. If $w_1 \in N(u_1) - V(K)$, $w_2 \in N(u_2) - V(K)$ and $w_1w_2 \in E(G)$, then at most one of the pairs \{u_1, w_1\}, \{u_2, w_2\}, and \{w_1, w_2\} has a common neighbor.

d. If $v \in V(K)$ and $w \in N(u_1) \cap N(u_2) - V(K)$, then v and w are nonadjacent and have no common neighbor in $G - (V(K) \cup \{u_1, u_2\})$.

e. If $w_1, w_2 \in N(u_1) \cap N(u_2) - V(K)$, then w_1 and w_2 are nonadjacent and have no common neighbor in $G - \{u_1, u_2\}$.

Proof. Let G be a connected graph, C a circuit of G of maximum order, K a component of $G - V(C)$ and u_1 and u_2 two neighbors of K on C. Throughout the proof P will denote a u_1-u_2 path with $P \not= V(P) - \{u_1, u_2\} \subset V(K)$.

a. Suppose $u_1u_2 \in E(G)$. Then the cycle with edge set $E(P) \cup \{u_1u_2\}$ contradicts the assertion of Lemma 2. Hence u_1 and u_2 are nonadjacent.

b. Let w be a vertex of $N(u_1) \cap N(u_2) - V(K)$. If $u_1w \not\in E(C)$ or $u_2w \not\in E(C)$ then the cycle with edge set $E(P) \cup \{u_1w, u_2w\}$ contradicts Lemma 2. Hence $u_1w, u_2w \in E(C)$. Suppose, for example, u_1 and w have a common neighbor v. From Lemma 2 we deduce that $v \in V(C)$ and at least one of the edges u_1v and uvw is in $E(C)$. Depending on whether or not each of the edges u_1v and uvw is in $E(C)$ we now define a subgraph C' of G by specifying $E(C') - E(C)$ and $E(C) - E(C')$; $V(C')$ will be the set of vertices of G with at least one edge of $E(C')$. In the table below there is a column for each of the edges u_1v and uvw; a one in such a column means that the relevant edge is in $E(C)$, while a zero means that it is in $E(G) - E(C)$.

<table>
<thead>
<tr>
<th>u_1v</th>
<th>uvw</th>
<th>$E(C') - E(C)$</th>
<th>$E(C) - E(C')$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>$E(P)$</td>
<td>${u_1w, u_2w}$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>$E(P) \cup {vw}$</td>
<td>${u_1v, u_2w}$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>$E(P) \cup {u_1v}$</td>
<td>${vw, u_2w}$</td>
</tr>
</tbody>
</table>

If, for example, $u_1v \in E(C)$ and $uvw \not\in E(C)$, then C' is defined as the subgraph of G with $V(C') = V(C) \cup V(P)$ and $E(C') = E(C) \cup E(P) \cup \{vw\} - \{u_1v, u_2w\}$, as indicated in the second row of the table. In all cases the fact that C is connected implies that C' is connected. Furthermore, since all vertices of C have even degree in C, all vertices of C' have even degree in C'. It follows that C' is a circuit with $|V(C')| = |V(C) \cup V(P)| > |V(C)|$, contradicting the choice of C and completing the proof of (b).

c. Let w_1 and w_2 be vertices of G such that $w_1 \in N(u_1) - V(K)$, $w_2 \in N(u_2) - V(K)$ and $w_1w_2 \in E(G)$. By Lemma 2 at least two of the edges u_1w_1, w_1w_2 and u_2w_2 are in $E(C)$. If one of the three edges is in $E(G) -$

\[E(C), \text{ then a slight variation on the arguments used in (a) yields that the vertices incident with each of the remaining edges have no common neighbor. Hence assume } u_{1}w_{1}, w_{1}w_{2}, u_{2}w_{2} \in E(C). \text{ Suppose that at least two of the pairs } \{u_{1}, w_{1}\}, \{w_{1}, w_{2}\} \text{ and } \{u_{2}, w_{2}\} \text{ have a common neighbor. We derive contradictions in two cases.} \]

Case 1. There exists a vertex \(w \) of \(G \) which is adjacent to at least three of the vertices \(u_{1}, u_{2}, w_{1}, w_{2} \).

From Lemma 2 and (b) we deduce that \(w \in V(C) - \{u_{1}, u_{2}, w_{1}, w_{2}\} \) and \(w \) is adjacent to \(w_{1}, w_{2} \) and exactly one of the vertices \(u_{1} \) and \(u_{2} \), \(u_{1} \) say. Lemma 2 also implies that at least one of the edges \(w_{1}u_{1}, w_{2}u_{2} \) is in \(E(C) \). In all possible cases we now specify, like in the proof of (b), a circuit \(C' \) of \(G \) with \(|V(C')| > |V(C)| \), contradicting the choice of \(C \).

<table>
<thead>
<tr>
<th>(wu_{1})</th>
<th>(ww_{1})</th>
<th>(ww_{2})</th>
<th>(E(C') - E(C))</th>
<th>(E(C) - E(C'))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(E(P))</td>
<td>({u_{1}w_{1}, u_{2}w_{2}, w_{1}w_{2}})</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(E(P) \cup {ww_{2}})</td>
<td>({wu_{1}, u_{2}w_{2}})</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(E(P) \cup {ww_{1}})</td>
<td>({wu_{1}, w_{1}w_{2}, u_{2}w_{2}})</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>(E(P) \cup {wu_{1}})</td>
<td>({wu_{2}, u_{2}w_{2}})</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>(E(P) \cup {ww_{2}})</td>
<td>({wu_{1}, u_{2}w_{2}})</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(E(P) \cup {wu_{1}})</td>
<td>({wu_{2}, u_{2}w_{2}})</td>
</tr>
</tbody>
</table>

Case 2. Each vertex of \(G \) is adjacent to at most two of the vertices \(u_{1}, u_{2}, w_{1}, w_{2} \).

We assume that \(u_{i} \) and \(w_{i} \) have a common neighbor \(v_{i} (i = 1, 2) \); the remaining subcases are similar. From Lemma 2 we deduce that \(v_{1}, v_{2} \in V(C) \) and at least one of the edges \(u_{i}v_{1}, v_{1}w_{1}, u_{2}v_{2} \) and \(v_{2}w_{2} \) is in \(E(C) \). Again a circuit \(C' \) of \(G \) with \(|V(C')| > |V(C)| \) can be specified in all possible cases. We only treat two representative cases.

<table>
<thead>
<tr>
<th>(u_{1}v_{1})</th>
<th>(v_{1}w_{1})</th>
<th>(u_{2}v_{2})</th>
<th>(v_{2}w_{2})</th>
<th>(E(C') - E(C))</th>
<th>(E(C) - E(C'))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(E(P) \cup {v_{2}w_{2}})</td>
<td>({u_{1}w_{1}, w_{1}w_{2}, u_{2}v_{2}})</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(E(P) \cup {u_{1}v_{1}, v_{1}w_{1}, u_{2}v_{2}})</td>
<td>({w_{1}w_{2}, v_{2}w_{2}})</td>
</tr>
</tbody>
</table>

d. Let \(v \) be a vertex of \(K \) and \(w \) a vertex in \(N(u_{1}) \cap N(u_{2}) - V(K) \). For \(i = 1, 2 \), let \(P_{i} \) be a \(u - v \) path with all internal vertices in \(K \). From Lemma 2 it follows that \(vw \notin E(G) \) and \(u_{1}w, u_{2}w \in E(C) \). Suppose \(v \) and \(w \) have a common neighbor \(u \) in \(G - (V(K) \cup \{u_{1}, u_{2}\}) \). Then \(uv \in E(C) \) by Lemma 2. If \(w \) is not a cut vertex of \(C \) or if \(u_{1}, u_{2} \) and \(u \) are in the same component of \(C - w \), then the subgraph \(C' \) of \(G \) with \(V(C') = V(C) \cup V(P_{1}) \) and \(E(C') = E(C) \cup E(P_{1}) \cup \{uv\} - \{uw, u_{1}w\} \) is connected, implying that \(C' \) is a circuit of \(G \) with \(|V(C')| > |V(C)| \). Hence assume that \(w \) is a cut vertex of \(C \) and, for example, \(u \) and \(u_{2} \) are in different components \(H_{1} \) and \(H_{2} \) of \(C - w \), respectively. Let \(C_{i} \) be the subgraph of \(C \)
induced by \(V(H_i) \cup \{w\} \) \((i = 1, 2)\). Then \(C_1 \) and \(C_2 \) are subcircuits of \(C \). In particular, \(C_1 \) and \(C_2 \) are bridgeless, so \(C_1 - uw \) and \(C_2 - u_2w \) are connected subgraphs of \(C \). It follows that \(C - \{uw, u_2w\} \) is connected.

But then the circuit \(C' \) with \(V(C') = V(C) \cup V(P_2) \) and \(E(C') = E(C) \cup E(P_2) \cup \{uv\} - \{uw, u_2w\} \) contradicts the choice of \(C \).

e. Let \(w_1 \) and \(w_2 \) be two vertices in \(N(u_1) \cup N(u_2) - V(K) \). Then \(u_iw_j \in E(C) \) by Lemma 2 \((i = 1, 2; j = 1, 2)\). The table below shows that a circuit \(C' \) with \(|V(C')| > |V(C)| \) can be constructed if \(w_1w_2 \in E(G) \).

<table>
<thead>
<tr>
<th>(w_1w_2)</th>
<th>(E(C') - E(C))</th>
<th>(E(C) - E(C'))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(E(P))</td>
<td>({u_1w_1, u_2w_1})</td>
</tr>
<tr>
<td>0</td>
<td>(E(P) \cup {w_1w_2})</td>
<td>({u_1w_1, u_2w_2})</td>
</tr>
</tbody>
</table>

Suppose \(w_1 \) and \(w_2 \) have a common neighbor \(v \) in \(G - \{u_1, u_2\} \). Again a circuit \(C' \) with \(|V(C')| > |V(C)| \) can be specified. Note that in the fourth row of the table below \(v \) may be a vertex of \(P \).

<table>
<thead>
<tr>
<th>(vw_1)</th>
<th>(vw_2)</th>
<th>(E(C') - E(C))</th>
<th>(E(C) - E(C'))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>(E(P))</td>
<td>({u_1w_1, u_2w_1})</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>(E(P) \cup {vw_2})</td>
<td>({u_1w_1, vw_1, u_2w_2})</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>(E(P) \cup {vw_1})</td>
<td>({u_1w_1, vw_2, u_2w_2})</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>(E(P) \cup {vw_1, vw_2})</td>
<td>({u_1w_1, u_2w_2})</td>
</tr>
</tbody>
</table>

Theorem 4. Let \(G \) be a nontrivial connected, almost bridgeless graph of order \(n \) with \(G \not\cong K_{1,n-1} \). If \(\deg u + \deg v \geq (2n + 1)/3 \) for every edge \(uv \) of \(G \), then \(G \) contains a \(D \)-circuit.

Proof. Let \(G \) be a connected, almost bridgeless graph of order \(n \) with \(G \not\cong K_{1,n-1} \). Assuming that \(G \) contains no \(D \)-circuit, we will exhibit two adjacent vertices with degree-sum at most \(\frac{3}{2}n \). Since \(G \) is almost bridgeless and \(G \not\cong K_{1,n-1} \), deletion of all vertices of degree 1 yields a nontrivial bridgeless graph, implying that \(G \) contains a circuit. Let \(C \) be a circuit of \(G \) such that \(|V(C)| \) is maximum and \(\beta(C) \geq \beta(C') \) for every circuit \(C' \) with \(|V(C')| = |V(C)| \). Since \(C \) is not a \(D \)-circuit, \(G - V(C) \) has a nontrivial component \(K \). From Lemma 2 and the fact that \(G \) is almost bridgeless we conclude that \(K \) has at least two neighbors on \(C \). We distinguish three cases.

Case 1. \(K \) has two neighbors on \(C \) which are joined by a path of length 2 contained in \(G - V(K) \).

Let \(u_1 \) and \(u_2 \) be two neighbors of \(K \) on \(C \) which are joined by the path \(u_1w_1u_2 \), where \(w_1 \not\in V(K) \). Let \(P \) be a \(u_1 - w_2 \) path with \(\emptyset \neq V(P) - \{u_1, u_2\} \subset V(K) \) such that \(|V(P)| \) is minimum. Define \(v_1 \) as the immediate successor of \(u_1 \) on \(P \). If \(V(P) - \{u_1, u_2\} = \{v_1\} \), let \(v_2 \) be an arbitrary neighbor of \(v_1 \) in \(K \), otherwise let \(v_2 \) be the successor of \(v_1 \) on \(P \). Finally, let \(H \) be the
induced subgraph \((V(P) \cup v_2, w_1)\) of \(G\). From Lemmas 2, 3(b) and 3(d) it follows that
\[
N(u_i) \cap N(v_i) \cap (V(G) - V(H)) = N(u_i) \cap N(w_i) \cap (V(G) - V(H))
= N(v_i) \cap N(w_i) \cap (V(G) - V(H)) = \emptyset. \tag{1}
\]

We next show that
\[
V(G) - (V(H) \cup N(u_i) \cup N(v_i) \cup N(w_i)) \neq \emptyset. \tag{2}
\]

Since each vertex of \(C\) has even degree in \(C\), \(u_2\) has a neighbor \(w_2\) on \(C\) with \(w_2 \neq w_1\). If \(u_1w_2 \notin E(G)\), then, by Lemmas 2 and 3(b), \(w_2\) is not adjacent to any of the vertices \(u_1, v_1\) and \(w_1\), implying (2). Now assume \(u_1w_2 \in E(G)\). Then by Lemma 2 we have \(u_1w_2, u_2w_2 \in E(C)\) and \(v_2w_2 \notin E(G)\). There exists a vertex \(w\) in \(G - V(H)\) which is adjacent to \(w_2\), otherwise the circuit \(C'\) with \(V(C') = V(C) \cup V(P) - \{w_2\}\) and \(E(C') = E(C) \cup E(P) - \{u_1w_2, u_2w_2\}\) satisfies \(|V(C')| \geq |V(C)|\) and \(\beta(C') > \beta(C)\), contradicting the choice of \(C\). By Lemma 2, \(w \notin V(K)\). Application of Lemmas 3(b), 3(d) and 3(e) yields that \(w\) is adjacent to none of the vertices \(u_1, v_1\) and \(w_1\), implying (2).

Equation (1) expresses that each vertex of \(G - V(H)\) is adjacent to at most one of the vertices \(u_1, v_1\) and \(w_1\). Together with (2) we obtain
\[
\deg u_1 + \deg v_1 + \deg w_1 \leq n - |V(H)| - 1 + \deg_H u_1 + \deg_H v_1 + \deg_H w_1. \tag{3}
\]

Similarly,
\[
\deg u_1 + \deg v_2 + \deg w_1 \leq n - |V(H)| - 1 + \deg_H u_1 + \deg_H v_2 + \deg_H w_1. \tag{4}
\]

Summation of the inequalities (3) and (4) yields
\[
2(\deg u_1 + \deg w_1) + \deg v_1 + \deg v_2
\leq 2(n - |V(H)| - 1 + \deg_H u_1 + \deg_H w_1) + \deg_H v_1 + \deg_H v_2. \tag{5}
\]

From Lemma 2, Lemma 3(a) and the minimality of \(|V(P)|\) we conclude that every vertex of \(H - \{v_1, v_2\}\) has degree 2 in \(H\). Furthermore, \(\deg_H u_1 = \deg_H v_2 = 2\) if \(v_2 \in V(P)\), while \(\deg_H u_1 = 3\) and \(\deg_H v_2 = 1\) otherwise. Observing that \(|V(H)| \geq 5\) we now deduce from (5) that
\[
2(\deg u_1 + \deg w_1) + \deg v_1 + \deg v_2 \leq 2n.
\]

It follows that either \(\deg u_1 + \deg w_1 \leq \frac{2}{3}n\) or \(\deg v_1 + \deg v_2 \leq \frac{2}{3}n\), settling Case 1.
Case 2. Case 1 does not apply and K has two neighbors on C which are joined by a path of length 3 contained in $G - V(K)$.

Let u_1 and u_2 be two neighbors of K on C which are joined by the path $u_1w_1w_2u_2$, where $w_1, w_2 \in V(K)$. Define P, v_1 and v_2 as in Case 1 and put $H = \langle V(P) \cup \{v_2, w_1, w_2\} \rangle$. By Lemma 3(c) at least one of the pairs $\{u_1, w_1\}$ and $\{u_2, w_2\}$, $\{u_1, w_1\}$ say, has no common neighbor. In particular,

$$N(u_1) \cap N(w_1) \cap (V(G) - V(H)) = \emptyset. \quad (6)$$

By Lemma 2, v_1 and w_1 have no common neighbor outside C. Suppose v_1 and w_1 have a common neighbor u on C with $u \neq u_1$. Then Case 1 applies to the neighbors u and u_1 of K on C, contrary to assumption. We conclude that

$$N(v_1) \cap N(w_1) \cap (V(G) - V(H)) = \emptyset. \quad (7)$$

Another application of Lemma 2 gives us

$$N(u_1) \cap N(u_2) \cap (V(G) - V(H)) = \emptyset. \quad (8)$$

From (6), (7), and (8) we deduce that

$$\deg u_1 + \deg v_1 + \deg w_1 \leq n - |V(H)| + \deg_H u_1 + \deg_H v_1 + \deg_H w_1. \quad (9)$$

Similarly,

$$\deg u_1 + \deg v_2 + \deg w_1 \leq n - |V(H)| + \deg_H u_1 + \deg_H v_2 + \deg_H w_1. \quad (10)$$

Summation of (9) and (10) yields

$$2(\deg u_1 + \deg w_1) + \deg v_1 + \deg v_2$$
$$\leq 2(n - |V(H)| + \deg_H u_1 + \deg_H w_1) + \deg_H v_1 + \deg_H v_2. \quad (11)$$

By Lemmas 2, 3(a), 3(b) and the minimality of $|V(P)|$, every vertex of $H - \{v_1, v_2\}$ has degree 2 in H, while $\deg_H v_1 + \deg_H v_2 = 4$. Observing that $|V(H)| \geq 6$, we deduce from (11) that

$$2(\deg u_1 + \deg w_1) + \deg v_1 + \deg v_2 \leq 2n,$$

implying that either $\deg u_1 + \deg w_1 \leq \frac{2}{3}n$ or $\deg v_1 + \deg v_2 \leq \frac{2}{3}n$.

Case 3. Neither Case 1 nor Case 2 applies.

Let u_1 and u_2 be two arbitrary neighbors of K on C and w a vertex in $N(u_2) - V(K)$. Define P, v_1 and v_2 as in Case 1 and put $H = \langle V(P) \cup \{v_2, w\} \rangle$.
By Lemma 2 and by assumption we have

\[N(u_1) \cap N(v_1) \cap (V(G) - V(H)) = N(u_2) \cap N(v_1) \cap (V(G) - V(H)) \]
\[= N(u_1) \cap N(u_2) \cap (V(G) - V(H)) = \emptyset, \]

implying that

\[\deg u_1 + \deg v_1 + \deg u_2 \leq n - |V(H)| + \deg_H u_1 + \deg_H v_1 + \deg_H u_2 \]
\[\leq n - 5 + 1 + 3 + 2 = n + 1. \]

Suppose \(\deg u_1 + \deg v_1 + \deg u_2 = n + 1 \). Then, putting \(U_1 = N(u_1) \cap V(C), U_2 = N(u_2) \cap V(C) \) and \(V_1 = N(v_1) \cap V(C) - \{u_1, u_2\} \), we have \(U_1 \neq \emptyset \neq U_2 \) and each vertex of \(C - \{u_1, u_2\} \) is in exactly one of the sets \(U_1, U_2 \) and \(V_1 \). Since \(C \) is connected, there exists an edge \(uv \) of \(C \) with \(u \in U_1 \) and \(v \in U_2 \cup V_1 \). If \(v \in V_1 \), then Case 1 applies to the neighbors \(u_1 \) and \(v \) of \(K \) on \(C \), contrary to assumption. If \(v \in U_2 \), then Case 2 applies to \(u_1 \) and \(u_2 \), again contrary to assumption. We conclude that

\[\deg u_1 + \deg v_1 + \deg u_2 \leq n. \]

By Lemma 2,\(N(v_1) \cap N(w) \cap (V(G) - V(C)) = N(u_1) \cap N(w) \cap (V(G) - V(C)) = \emptyset. \) Assuming that \(N(v_1) \cap N(w) \cap V(C) - \{u_2\} \neq \emptyset \) or \(N(u_1) \cap N(w) \cap V(C) \neq \emptyset \), we reach the contradiction that Case 1 or Case 2 applies. Hence

\[N(v_1) \cap N(w) \cap (V(G) - V(H)) = N(u_1) \cap N(w) \cap (V(G) - V(H)) = \emptyset. \]

Together with (12) we obtain

\[\deg u_1 + \deg v_1 + \deg w \leq n - |V(H)| + \deg_H u_1 + \deg_H v_1 + \deg_H w \]
\[\leq n - 5 + 1 + 3 + 1 = n. \]

Summation of (13) and (15) yields

\[2(\deg u_1 + \deg v_1) + \deg u_2 + \deg w \leq 2n, \]

so that either \(\deg u_1 + \deg v_1 \leq \frac{2}{3}n \) or \(\deg u_2 + \deg w \leq \frac{2}{3}n. \) ■

Corollary 5. Let \(G \) be a connected, almost bridgeless graph of order \(n \geq 4 \) such that \(\deg u + \deg v \geq \frac{2(n + 1)}{3} \) for every edge \(uv \) of \(G \). Then \(L(G) \) is hamiltonian. Moreover, if \(G \neq C_4, C_5 \), then \(L(G) \) is pancyclic.
Proof. Let G be a connected, almost bridgeless graph of order $n \geq 4$ such that $\deg u + \deg v \geq (2n + 1)/3$ for every edge uv of G. The existence of a hamiltonian cycle in $L(G)$ immediately follows from the combination of Theorems 1 and 4. If $G \cong K_{1,n-1}$, then $L(G)$ is complete and hence pancyclic. Now assume $G \neq C_4, C_5, K_{1,n-1}$ and $L(G)$ is not pancyclic. Let $k = \max\{i \mid L(G) \text{ does not contain } C_i\}$.

We have $\Delta(G) \geq 3$, so $k \geq 4$. Let $D = u_1 u_2 \ldots u_p u_1$ be a shortest cycle in G and suppose $p \geq 5$. Then every vertex of $G - V(D)$ is adjacent to at most one vertex of D, implying that

$$p(2n + 1)/6 \leq \sum_{i=1}^{p} \deg u_i \leq n - p + 2p,$$

so that $n \leq \lfloor 5p/(2p - 6) \rfloor \leq 6$. However, it is easily checked that every graph of order at most 6 satisfying our assumptions has a cycle of length at most 4. Hence, in fact, $p \leq 4$ and

$$\beta(D) \geq p + \sum_{i=1}^{p} (\deg u_i - 2) \geq \lceil -p + p(2n + 1)/6 \rceil = \lceil (2n - 5)/6 \rceil = n - 2.$$ \hspace{1cm} (16)

Observing that, for any circuit C of G, $L(G)$ contains a cycle of length i for every i with $|E(C)| \leq i \leq \beta(C)$, we conclude that $k \geq n - 1$.

$L(G)$ is hamiltonian, so $k < |E(G)|$ and $L(G)$ contains C_{k+1}. Hence G contains a circuit C with $|E(C)| \leq k + 1 \leq \beta(C)$. In fact $|E(C)| = k + 1$, otherwise $L(G)$ contains C_4. Since C is a circuit, there exists edge-disjoint cycles D_1, D_2, \ldots, D_r such that $C = \bigcup_{i=1}^{r} D_i$. We now derive contradictions in two cases.

Case 1. $r = 1$.

Since $|E(C)| = k + 1 \geq n$, C is a hamiltonian cycle of G and $k = n - 1$. Let D' be a shortest cycle among all cycles of G that contain exactly one chord of C. Let D' have length q. If $q = 3$, then G, and hence $L(G)$ too, contains C_{n-1}, a contradiction. If $q \geq 4$, then $n \geq 6$ and as in (16) we obtain

$$\beta(D') \geq \lceil q(2n - 5)/6 \rceil \geq \lceil 4(2n - 5)/6 \rceil \geq n - 1,$$

again implying the contradiction that $L(G)$ contains C_{n-1}.

Case 2. $r \geq 2$.

Let H be the graph with $V(H) = \{D_1, D_2, \ldots, D_r\}$ and $D_i D_j \in E(H)$ if and only if $V(D_i) \cap V(D_j) \neq \emptyset$. Since H is connected, at least two vertices of H are not cut vertices of H. Equivalently, there are at least two values of j for which $\bigcup_{1 \leq i \leq n, i \neq j} D_i$ is a connected subgraph of G and hence a circuit of G. Assume
420 JOURNAL OF GRAPH THEORY

without loss of generality that \(C' = \bigcup_{i=0}^{k-1} D_i \) and \(C'' = D_1 \cup \bigcup_{i=0}^{k-1} D_i \) are circuits of \(G \). If \(E(D_2 - V(C'')) = \emptyset \), then \(|E(C'')| < |E(C)| = k + 1 \leq \beta(C'') \), so that \(L(G) \) contains \(C_k \). Hence there exists an edge \(uv \) of \(D_2 \) with \(u, v \notin V(C'') \). Let \(E_1 \) be the set of edges of \(D_2 \) incident with at least one vertex of \(C' \) and \(E_2 = E(D_2) - E_1 \). Then

\[
\beta(C') \geq |E(C')| + |E_1| + \deg u - 2 + \deg v - 2 \geq |E(C)| - |E_2|
\]
\[
+ (2n + 1)/3 - 4.
\]

On the other hand, since \(L(G) \) does not contain \(C_k \),

\[
\beta(C') \leq k - 1 = |E(C)| - 2.
\]

It follows that \(|E_2| \geq (2n - 5)/3 \). Hence \(|V(D_1 - V(C'))| \geq (2n - 2)/3 \) and similarly \(|V(D_2 - V(C''))| \geq (2n - 2)/3 \). But then

\[
n = |V(G)| \geq |V(D_1 - V(C'))| + |V(D_2 - V(C''))| + 1
\]
\[
\geq 2(2n - 2)/3 + 1 > n,
\]
a contradiction. \(\Box \)

We do not know any connected, almost bridgeless graph \(G \) of order \(n \) without a \(D \)-circuit such that \(G \neq K_{1,n-1} \) and \(\deg u + \deg v \geq \frac{n}{3} \) for every edge \(uv \) of \(G \). We conjecture that, for \(n \) sufficiently large, the bound \((2n + 1)/3 \) in Theorem 4 and Corollary 5 can be decreased to \((2n - 9)/5 \). If true, this conjecture is best possible. To see this, construct for \(i \geq 3 \) a graph \(G(i) \) as follows: take five disjoint copies of \(K_n \), label them \(G_1, \ldots, G_5 \); choose three vertices \(u_1, u_2, u_3 \) in \(G_1 \), three vertices \(v_1, v_2, v_3 \) in \(G_2 \), two vertices \(x_1, x_2 \) in \(G_3 \), two vertices \(y_1, y_2 \) in \(G_4 \) and two vertices \(z_1, z_2 \) in \(G_5 \); obtain \(G(i) \) as \(\bigcup_{j=1}^5 G_j + \{u_1x_1, u_2y_1, u_3z_1, v_1x_2, v_2y_2, v_3z_2\} \). Then \(G(i) \) is 2-connected and \(\deg u + \deg v \geq (2|V(G(i))| - 10)/5 \) for every edge \(uv \) of \(G(i) \), while \(G(i) \) contains no \(D \)-circuit and hence \(L(G(i)) \) is nonhamiltonian.

Although Corollary 5 may not be best possible, it is strong enough to contain Clark’s result.

Corollary 6. (Clark [3]). Let \(G \) be a connected graph of order \(n \geq 6 \). If \(\deg u + \deg v \geq n - 1 - p(n) \) for every edge \(uv \) of \(G \), where \(p(n) = 0 \) if \(n \) is even and \(p(n) = 1 \) if \(n \) is odd, then \(L(G) \) is hamiltonian.

Proof. Let \(G \) be a connected graph of order \(n \geq 6 \) such that \(\deg u + \deg v \geq n - 1 - p(n) \) for every edge \(uv \) of \(G \). Since \(n \geq 6 \), \(n - 1 - p(n) \geq (2n + 1)/3 \). Hence we are done by Corollary 5 if \(G \) is shown to be almost bridgeless. Suppose \(G \) contains a bridge \(u_1u_2 \) with \(\deg u_1 \neq 1 \neq \deg u_2 \)
deg \(u_2 \). Let \(H_i \) be the component of \(G - u_i u_2 \) containing \(u_i \) \((i = 1, 2)\). Assume without loss of generality that \(|V(H_i)| \leq |V(H_2)| \), so that \(|V(H_i)| \leq (n - p(n))/2 \). Since \(|V(H_1)| \geq 2 \), \(H_1 - u_1 \) contains a vertex \(u \). If \(u \) has a neighbor \(v \) with \(v \neq u_1 \), then \(\deg u + \deg v \leq 2(|V(H_1)| - 1) \leq n - p(n) - 2 \), a contradiction. If \(u \) has no neighbor in \(H - u_1 \), then \(uu_1 \in E(G) \) and \(\deg u = 1 \), so that \(\deg u + \deg u_1 \leq 1 + |V(H_1)| \leq 1 + (n - p(n))/2 \). For \(n \geq 6 \) we have \(1 + (n - p(n))/2 \leq n - 2 - p(n) \). Thus \(\deg u + \deg u_1 \leq n - 2 - p(n) \), again a contradiction.

The bound \((2n + 1)/3\) in Corollary 5 can be decreased in case only hamiltonian graphs are considered.

Theorem 7. Let \(G \) be a hamiltonian graph of order \(n \geq 13 \). If \(\deg u + \deg v \geq n/2 \) for every edge \(uv \) of \(G \), then \(L(G) \) is pancyclic.

For the proof of Theorem 7 we refer to [1].

3. SPANNING CIRCIRCTS

In [6] Lesniak-Foster and Williamson proved that a graph \(G \) contains an S-circuit if \(|V(G)| = n \geq 6 \), \(\delta(G) \geq 2 \) and \(\deg u + \deg v \geq n - 1 \) for every pair of nonadjacent vertices \(u \) and \(v \). All graphs showing that this result is best possible contain a bridge. For a graph \(G \) to have an S-circuit it is necessary that \(G \) is connected and contains no bridges. We now show how the above result can be improved by additionally imposing these necessary conditions.

Theorem 8. Let \(G \) be a connected bridgeless graph of order \(n \geq 3 \). If \(\deg u + \deg v \geq (2n + 3)/3 \) for every pair of nonadjacent vertices \(u \) and \(v \), then \(G \) contains an S-circuit.

Proof. Let \(G \) be a connected bridgeless graph of order \(n \geq 3 \). Assuming that \(G \) contains no S-circuit, we will exhibit two nonadjacent vertices with degree-sum smaller than \((2n + 3)/3\). Since \(G \) is bridgeless, \(G \) contains a circuit. Let \(C \) be a circuit of \(G \) of maximum order and \(K \) a component of \(G - V(C) \). By Lemma 2 and the fact that \(G \) is bridgeless, \(K \) has at least two neighbors on \(C \). We distinguish three cases.

Case 1. \(K \) has two neighbors on \(C \) which are joined by a path of length 2 contained in \(G - V(K) \).

Let \(u_1 \) and \(u_2 \) be two neighbors of \(K \) on \(C \) which are joined by the path \(u_1 w_1 u_2 \), where \(w_1 \notin V(K) \). Let \(P \) be a \(u_1 - u_2 \) path with \(\emptyset \neq V(P) - \{u_1, u_2\} \subset V(K) \) such that \(|V(P)| \) is minimum and let \(v \) be an arbitrary vertex in \(V(P) \cap V(K) \). We distinguish two subcases.
Case 1.1. \(u_1 \) and \(u_2 \) have a common neighbor \(w_2 \in V(G) - (V(K) \cup \{w_1\}) \).

Put \(H = \langle V(P) \cup \{w_1, w_2\} \rangle \). Lemmas 2, 3(d) and 3(e) imply that \(\{v, w_1, w_2\} \) is an independent set and each vertex of \(G - V(H) \) is adjacent to at most one of the vertices \(v, w_1, \) and \(w_2 \). Together with the minimality of \(|V(P)| \) we obtain

\[
\deg v + \deg w_1 + \deg w_2 \leq n - |V(H)| + \deg_H v + \deg_H w_1 + \deg_H w_2 \\
\leq n - 5 + 2 + 2 + 2 = n + 1.
\]

It follows that at least one of the nonadjacent vertex pairs \(\{v, w_1\}, \{v, w_2\} \) and \(\{w_1, w_2\} \) has degree-sum at most \(2(n + 1)/3 \), settling Case 1.1.

Case 1.2. \(u_1 \) and \(u_2 \) have no common neighbor in \(V(G) - (V(K) \cup \{w_1\}) \).

Put \(H = \langle V(P) \cup \{w_1\} \rangle \). By Lemmas 2, 3(b) and 3(d), each vertex of \(G - V(H) \) is adjacent to at most one of the vertices \(u_1, u_2, v, w_1 \), so that

\[
\deg u_1 + \deg u_2 + \deg v + \deg w_1 \leq n - |V(H)| + \deg_h u_1 + \deg_h u_2 \\
+ \deg_h v + \deg_h w_1 \leq n - 4 + 2 + 2 + 2 = n + 4.
\]

It follows that at least one of the nonadjacent vertex pairs \(\{u_1, u_2\} \) and \(\{v, w_1\} \) has degree-sum at most \((n + 4)/2 \). If \(n > 6 \), then \((n + 4)/2 < (2n + 3)/3 \) and we are done. Now assume \(n \leq 6 \). Since \(\deg_C u_i \geq 2 \), \(u_i \) has a neighbor \(v_i \) on \(C \) with \(v_i \neq w_1, w_2, w_3 \). By assumption \(v_1 \) and \(v_2 \) do not coincide, so that \(n \geq 6 \) and hence \(n = 6 \). By Lemmas 2 and 3(b), \((N(v) \cup N(w_1)) \cap (\{v_1, v_2\} = \emptyset \). Thus \(\deg v = \deg w_1 = 2 \), so that \(\deg v + \deg w_1 = 4 < 5 = (2n + 3)/3 \).

Case 2. Case 1 does not apply and \(K \) has two neighbors on \(C \) which are joined by a path of length 3 contained in \(G - V(K) \).

Let \(u_1 \) and \(u_2 \) be two neighbors of \(K \) on \(C \) which are joined by the path \(u_1 w_1 w_2 u_2 \), where \(w_1, w_2 \notin V(K) \). Define \(P \) and \(v \) as in Case 1 and put \(H = \langle V(P) \cup \{w_1, w_2\} \rangle \). By Lemma 3(c) at least one of the following three subcases applies.

Case 2.1. \(N(u_1) \cap N(v) = N(u_2) \cap N(w_2) = \emptyset \).

By Lemma 2 and the fact that Case 1 does not apply, each vertex of \(G - V(H) \) is adjacent to at most one of the vertices \(u_1, v \) and \(w_1 \). Hence

\[
\deg u_1 + \deg v + \deg w_1 \leq n - |V(H)| + \deg_H u_1 + \deg_H v + \deg_H w_1 \\
\leq n - 5 + 2 + 2 + 2 = n + 1.
\]

Similarly,

\[
\deg u_2 + \deg v + \deg w_2 \leq n + 1.
\]
Assuming without loss of generality that $\deg w_1 \leq \deg w_2$ we deduce from (17) and (18) that

$$2(\deg v + \deg w_1) + \deg u_1 + \deg u_2 \leq 2 \deg v + \deg w_1 + \deg w_2 + \deg u_1 + \deg u_2 \leq 2n + 2.$$

Hence one of the nonadjacent vertex pairs $\{v, w_1\}$ and $\{u_1, u_2\}$ has degree-sum at most $(2n + 2)/3$.

Case 2.2 $N(u_1) \cap N(w_1) = N(w_1) \cap N(w_2) = \emptyset$.

Similar arguments as used in Case 2.1 now yield

$$\deg u_1 + \deg v + \deg w_1 \leq n + 1$$

and

$$\deg v + \deg w_1 + \deg w_2 \leq n + 1,$$

implying that

$$2(\deg v + \deg w_1) + \deg u_1 + \deg w_2 \leq 2n + 2.$$

Hence either $\deg v + \deg w_1 \leq (2n + 2)/3$ or $\deg u_1 + \deg w_2 \leq (2n + 2)/3$.

Case 2.3. $N(u_2) \cap N(w_2) = N(w_1) \cap N(w_2) = \emptyset$.

This case is symmetric to Case 2.2.

Case 3. Neither Case 1 nor Case 2 applies.

Let u_1 and u_2 be two neighbors of K on C and, for $i = 1, 2$, w_i a vertex in $N(u_i) \setminus V(K)$. Define P and v as in Case 1 and put $H = \langle V(P) \cup \{w_1, w_2\} \rangle$. By Lemma 2 and the fact that neither Case 1 nor Case 2 applies, each vertex of $G \setminus V(H)$ is adjacent to at most one of the vertices u_1, v and w_2. Hence

$$\deg u_1 + \deg v + \deg w_2 \leq n - |V(H)| + \deg_H u_1 + \deg_H v + \deg_H w_2$$

$$\leq n - 5 + 2 + 2 + 1 = n.$$

Similarly,

$$\deg u_2 + \deg v + \deg w_1 \leq n.$$

Assuming without loss of generality that $\deg w_1 \leq \deg w_2$, we obtain

$$2(\deg v + \deg w_1) + \deg u_1 + \deg u_2 \leq 2n.$$

Hence either $\deg v + \deg w_1 \leq \frac{2}{3}n$ or $\deg u_1 + \deg u_2 \leq \frac{2}{3}n$.

The graph $K_{2,3}$ is the only known example of a connected bridgeless graph of order $n \geq 3$ without an S-circuit such that $\deg u + \deg v \geq (2n + 2)/3$ for every pair of nonadjacent vertices u and v. We conjecture that the bound in Theorem 8, too, can be decreased to $(2n - 9)/5$ if n is sufficiently large. Such an improvement would be best possible in view of the graphs $G(i)$ defined in Section 2.

Theorem 8 implies the result of Lesniak-Foster and Williamson mentioned above.

Corollary 9. (Lesniak-Foster and Williamson [6]). Let G be a graph with $|V(G)| = n \geq 6$ and $\delta(G) \geq 2$. If $\deg u + \deg v \geq n - 1$ for every pair of nonadjacent vertices u and v, then G contains an S-circuit.

Proof. Let G be a graph with $|V(G)| = n \geq 6$ and $\delta(G) \geq 2$ such that $\deg u + \deg v \geq n - 1$ for every pair of nonadjacent vertices u and v. It is easily seen that G must be connected. Since $n \geq 6$, $n - 1 \geq (2n + 3)/3$. In view of Theorem 8 it remains to be shown that G is bridgeless. Suppose G contains a bridge u_1u_2. Let H_i be the component of $G - u_1u_2$ containing u_i $(i = 1, 2)$. Since $\delta(G) \geq 2$, H_i is nontrivial, say that $v_i \in V(H_i) - \{u_i\}$ $(i = 1, 2)$. Then $v_1v_2 \notin E(G)$ and $\deg v_1 + \deg v_2 \leq |V(H_1)| - 1 + |V(H_2)| - 1 = n - 2$, a contradiction.

4. DOMINATING CIRCUITS REVISITED

A slight variation on the proof of Theorem 8 gives us the following counterpart of Theorem 4.

Theorem 10. Let G be a connected, almost bridgeless graph of order $n \geq 3$. If $\deg u + \deg v \geq (2n + 1)/3$ for every pair of nonadjacent vertices u and v, then G contains a D-circuit.

Proof outline. Let G be a connected, almost bridgeless graph of order $n \geq 3$. We will exhibit a nonadjacent vertex pair with degree-sum smaller than $(2n + 1)/3$ under the assumption that G contains no D-circuit. Let C be a circuit of G of maximum order and K a nontrivial component of $G - V(C)$. K has at least two neighbors on C.

Distinguish the same cases as in the proof of Theorem 8. In each case define P as a shortest $u_1 - u_2$ path with $\emptyset \neq V(P) - \{u_1, u_2\} \subseteq V(K)$ and v_1 as the successor of u_1 on P. If $V(P) - \{u_1, u_2\} = \{v_1\}$, let v be an arbitrary neighbor of v_1 in K, otherwise let v be the successor of v_1 on P. Now all upper bounds on degree-sums in the proof of Theorem 8 can be decreased to obtain a vertex pair as desired.

Without proof we mention that the corresponding counterpart of Corollary 5 also holds.
Corollary 11. Let G be a connected, almost bridgeless graph of order $n \geq 3$ such that $\deg u + \deg v \geq (2n + 1)/3$ for every pair of nonadjacent vertices u and v. Then $L(G)$ is hamiltonian. Moreover, if $G \neq C_4, C_5$, then $L(G)$ is pancyclic.

Again we conjecture, as a best possible improvement of Theorem 10 and Corollary 11, that the bound $(2n + 1)/3$ can be decreased to $(2n - 9)/5$ for n sufficiently large.

Note added in proof. A graph G is cyclically 2-edge-connected if no two cycles of G can be separated by the removal of at most one edge. Suppose G has order $n \geq 5$ with $\deg u + \deg v \geq (2n + 1)/3$ for every edge uv of G. Then G is connected and almost bridgeless if and only if G is cyclically 2-edge-connected and has no isolated vertices. Consequently, a corollary of Theorem 4 is the following: Let G be a nontrivial cyclically 2-edge-connected graph of order n with no isolated vertices. If $\deg u + \deg v \geq (2n + 1)/3$ for every edge uv of G, then G contains a D-circuit. Here the bound $(2n + 1)/3$ is best possible, as the following example shows. Let u be any vertex in $K_{(n,3)-1}$, v the center of the star $K_{1,\{2n/3\}}$, and $G = (K_{(n,3)-1} \cup K_{1,\{2n/3\}}) + uv$. Then G satisfies the above conditions with $(2n + 1)/3$ replaced with $2n/3$ but G has no D-circuit, since $L(G)$ is not hamiltonian.

References