LONG CYCLES IN GRAPHS WITH LARGE DEGREE SUMS

Douglas BAUER*

and

H.J. VELDMAN
Faculty of Applied Mathematics, University of Twente, Enschede, The Netherlands

A. MORGANA
Institute of Mathematics, University of Rome, Rome, Italy

E.F. SCHMEICHEL
Department of Mathematics and Computer Science, San Jose State University, San Jose, CA 95192, U.S.A.

Received 14 April 1987
Revised 8 December 1987

A number of results are established concerning long cycles in graphs with large degree sums. Let \(G \) be a graph on \(n \) vertices such that \(d(x) + d(y) + d(z) \geq s \) for all triples of independent vertices \(x, y, z \). Let \(c \) be the length of a longest cycle in \(G \) and \(\alpha \) the cardinality of a maximum independent set of vertices. If \(G \) is 1-tough and \(s \geq n \), then every longest cycle in \(G \) is a dominating cycle and \(c \geq \min(n, n + \frac{1}{3}s - \alpha) \geq \min(n, \frac{1}{2}n + \frac{1}{3}s) \geq \frac{2}{3}n \). If \(G \) is 2-connected and \(s \geq n + 2 \), then also \(c \geq \min(n, n + \frac{1}{3}s - \alpha) \), generalizing a result of Bondy and one of Nash-Williams. Finally, if \(G \) is 2-tough and \(s > n \), then \(G \) is hamiltonian.

1. Terminology

We consider only finite undirected graphs without loops or multiple edges. Our terminology is standard except as indicated. A good reference for any undefined terms is [7]. We need a few definitions and some convenient notation. Let \(\omega(G) \) denote the number of components of a graph \(G \). As introduced by Chvátal [10], a graph \(G \) is \(t \)-tough if \(|S| \geq t\omega(G - S) \) for any subset \(S \) of the vertex set \(V \) of \(G \) with \(\omega(G - S) > 1 \). The toughness of \(G \), denoted \(t(G) \), is the maximum value of \(t \) for which \(G \) is \(t \)-tough \((t(K_n) = \infty \) for all \(n \geq 1 \)). We will denote by \(\alpha \) the cardinality of a maximum set of independent vertices of \(G \). A cycle \(C \) of \(G \) is a dominating cycle if every edge of \(G \) has at least one of its vertices on \(C \). A cycle \(C \) of \(G \) is a dominating cycle if every edge of \(G \) has at least one of its vertices on \(C \). If \(C \) is a cycle of \(G \) we denote by \(C \) the cycle \(C \) with a given orientation. If \(u, v \in V(C) \), then \(uCv \) denotes the consecutive vertices on \(C \) from \(u \) to \(v \) in the direction specified by \(C \). The same vertices, in reverse order, are given by \(vCu \). We use \(u^* \)

* On sabbatical leave from Department of Pure and Applied Mathematics, Stevens Institute of Technology, Hoboken, New Jersey 07030, U.S.A.

to denote the successor of \(u \) on \(C \) and \(u^- \) to denote its predecessor. If \(v \in V \) then \(N(v) \) is the set of all vertices in \(V \) adjacent to \(v \). If \(A \subseteq V(C) \), then \(A^+ = \{ v^+ \mid v \in A \} \). The set \(A^- \) is analogously defined.

2. Results

Our work was motivated by two recent conjectures of Ainouche and Christofides [1].

Conjecture 1. Let \(G \) be a 1-tough graph on \(n \geq 3 \) vertices such that \(d(x) + d(y) + d(z) \geq n \) for all independent sets of vertices \(x, y, z \). Then \(G \) is hamiltonian.

Conjecture 2. Let \(G \) be a 1-tough graph on \(n \geq 3 \) vertices such that \(d(x) + d(y) \geq q \) for all distinct nonadjacent vertices \(x, y \). Then \(G \) has a cycle of length at least \(\min(n, q + 2) \).

The following class of graphs, given in [1], shows that each conjecture, if true, would be best possible. For \(n = 3r + 1 \geq 7 \), construct the graph \(H_n \) from \(3K_r + K_1 \) by choosing one vertex from each copy of \(K_r \), say \(u, v \) and \(w \), and adding the edges \(uv, uw \) and \(vw \). The graph \(H_n \) is 1-tough on \(n = 3r + 1 \) vertices, satisfies \(d(x) + d(y) \geq 2r \) for all distinct nonadjacent vertices \(x, y \) and also satisfies \(d(x) + d(y) + d(z) \geq n - 1 \) for all sets of independent vertices \(x, y, z \). Yet a longest cycle in \(H_n \) has length only \(2r + 2 \).

Conjecture 2 was recently proven to be true [5]. For convenience we state it as a theorem below.

Theorem 1. Let \(G \) be a 1-tough graph on \(n \geq 3 \) vertices such that \(d(x) + d(y) \geq q \) for all distinct nonadjacent vertices \(x, y \). Then \(G \) has a cycle of length at least \(\min(n, q + 2) \).

Conjecture 1, however, is false as indicated by the following class of graphs. For odd \(n \geq 15 \), construct the graph \(G_n \) from

\[\tilde{K}_{\frac{n}{3}(n-1)} \cup K_m \cup K_{\frac{n}{3}(n+1)-m}, \text{ where } \frac{1}{3}n \leq m \leq \frac{1}{3}(n-5), \]

by joining every vertex in \(K_m \) to all other vertices and by adding a matching between all vertices in \(K_{\frac{n}{3}(n+1)-m} \) and \(\frac{1}{3}(n+1) - m \) vertices in \(\tilde{K}_{\frac{n}{3}(n-1)} \). Note that \(G_n \) has minimum degree \(m \). It is easily seen that \(G_n \) is 1-tough but not hamiltonian. If \(\frac{1}{3}(n+1) - m \) is odd (even) then a longest cycle in \(G_n \) has length \(\frac{1}{3}(3n+1) + \frac{1}{3}m \) \((\frac{1}{3}(3n+3) + \frac{1}{3}m) \). A variation of the graph \(G_n \), with \(K_m \) replaced by \(K_{\frac{1}{3}(n-5)} \), has already appeared in the literature [8, 13]. It can be used to show that the following theorem of Jung [11] is best possible.
Theorem 2. Let G be a 1-tough graph on $n \geq 11$ vertices such that $d(x) + d(y) > n - 4$ for all distinct nonadjacent vertices x, y. Then G is hamiltonian.

Although Conjecture 1 is false its hypothesis justifies the following conclusion, which follows immediately from Theorem 9 below.

Theorem 3. Let G be a 1-tough graph on $n \geq 3$ vertices such that $d(x) + d(y) + d(z) > s > n$ for all independent sets of vertices x, y, z. Then G contains a cycle of length at least $\min(n, \frac{1}{2}n + \frac{1}{3}s)$.

Corollary 4. Let G be a 1-tough graph on $n \geq 3$ vertices with minimum degree $\delta \geq \frac{1}{3}n$. Then G contains a cycle of length at least $\frac{1}{2}n$.

Theorem 3 is a little surprising in the following sense. If, for example, $\delta = \frac{1}{4}n$ we conclude from Theorem 1 (which is “best possible”) that G has a cycle of length at least $\frac{1}{2}n + 2$. From Corollary 4 we deduce that G has a cycle of length at least $\frac{1}{3}n$. Apparently for 1-tough graphs G, as δ crosses the threshold of $\frac{1}{3}n$, the length of a longest cycle that is forced in G jumps from $\frac{1}{2}n + 2$ to at least $\frac{1}{3}n$. If Conjecture 3, mentioned in Section 4, is true then G is forced to have a cycle of length at least $\frac{1}{12}(11n + 3)$.

The proof of Theorem 3, as well as the proofs of our other results, depends on the intermediate conclusion that every longest cycle in G is a dominating cycle. This is established by our next theorem, whose proof is given in Section 3.

Theorem 5. Let G be a 1-tough graph on n vertices such that $d(x) + d(y) + d(z) \geq n$ for all independent sets of vertices x, y, z. Then every longest cycle in G is a dominating cycle.

Theorem 5 generalizes the following theorem of Bigalke and Jung [8].

Theorem 6. Let G be a 1-tough graph on n vertices with $\delta \geq \frac{1}{2}n$. Then every longest cycle in G is a dominating cycle.

The graphs H_n with $n \geq 10$ show that both Theorem 5 and Theorem 6 are best possible. We remark that for $n \geq 5$ the condition in Theorem 5 that G be 1-tough can in fact be replaced by the weaker condition that the deletion of any nonempty proper subset S of V yields a graph with at most $|S|$ nontrivial components. This weaker condition is necessary for a graph to have a dominating cycle [14]. Thus, if the condition that G be 1-tough is replaced by the above weaker condition, we obtain a result that also generalizes the following theorem of Bondy [9].

Theorem 7. Let G be a 2-connected graph on n vertices such that $d(x) + d(y) + d(z) \geq n + 2$ for all independent sets of vertices x, y, z. Then every longest cycle in G is a dominating cycle.
The next key lemma, proved in Section 3, is the basis for many of the results that follow.

Lemma 8. Let \(G \) be a graph on \(n \) vertices such that \(\delta \geq 2 \) and \(d(x) + d(y) + d(z) \geq n \) for all independent sets of vertices \(x, y, z \). Let \(G \) contain a longest cycle \(C \) which is a dominating cycle. If \(v_0 \in V - V(C) \) and \(A = N(v_0) \), then \((V - V(C)) \cup A^+ \) is an independent set of vertices.

Lemma 8 has a number of applications. The next two theorems are obtained by combining Lemma 8 with Theorems 5 and 7, respectively. A proof of Theorem 10 and an outline proof of Theorem 9 are given in Section 3.

Theorem 9. Let \(G \) be a 1-tough graph on \(n \geq 3 \) vertices such that \(d(x) + d(y) + d(z) \geq s \geq n \) for all independent sets of vertices \(x, y, z \). Then \(G \) contains a cycle of length at least
\[
\min(n, n + 3s - \alpha).
\]

Since \(\alpha \leq \frac{1}{3}n \) for 1-tough graphs, Theorem 3 follows immediately from Theorem 9.

Theorem 10. Let \(G \) be a 2-connected graph on \(n \) vertices such that \(d(x) + d(y) + d(z) \geq s \geq n + 2 \) for all independent sets of vertices \(x, y, z \). Then \(G \) contains a cycle of length at least
\[
\min(n, n + 3s - \alpha).
\]

Theorem 10 is best possible in two different ways. The graph \(K_{p,q} \), with \(2 \leq p \leq q \leq 2p - 2 \) and \(q \geq 3 \) has a longest cycle of length exactly \(n + \frac{1}{3}s - \alpha = 2p \).
The graph \(H = 3K_1 + 2K_1 \) has \(d(x) + d(y) + d(z) \geq s \geq n + 1 \) for all independent sets of vertices \(x, y, z \) and has a longest cycle of length \(2t + 2 \), which is less than \(\min(n, n + \frac{1}{3}(n + 1) - 3) = n \) (\(t \geq 2 \)).

It is easily seen that if \(\alpha \geq 3 \), the hypothesis of Theorem 10 implies \(\alpha \leq n - \frac{1}{3}s \).
Hence Theorem 10 generalizes the following result of Bondy [9].

Theorem 11. Let \(G \) be a 2-connected graph on \(n \) vertices such that \(d(x) + d(y) + d(z) \geq s \geq n + 2 \) for all independent sets of vertices \(x, y, z \). Then \(G \) has a cycle of length at least \(\min(n, \frac{3}{2}s) \).

Theorem 10 also generalizes the following result of Nash-Williams [12].

Theorem 12. Let \(G \) be a 2-connected graph on \(n \) vertices with \(\delta \geq \max(\frac{1}{3}(n + 2), \alpha) \). Then \(G \) is hamiltonian.

Bigalke and Jung [8] also generalized Theorem 12.

Theorem 13. Let \(G \) be a 1-tough graph on \(n \geq 3 \) vertices with \(\delta \geq \max(\frac{1}{3}n, \alpha - 1) \). Then \(G \) is hamiltonian.
Note that Theorem 9 is only a partial generalization of Theorem 13. Theorem 9 allows us to draw conclusions concerning long, but not necessarily hamiltonian, cycles in G. However if $\delta = \alpha - 1 \geq \frac{1}{n}$ we cannot conclude from Theorem 9 that G is hamiltonian. It is possible, however, to combine Lemma 8 with a suitably modified proof of Theorem 13 to obtain the following.

Theorem 14. Let G be a 1-tough graph on $n \geq 3$ vertices with $\delta \geq \frac{3}{2}n$. Then G contains a cycle of length at least $\min(n, n + \delta - \alpha + 1)$.

The proof of Theorem 14 is lengthy and will appear elsewhere [6]. Note that this result yields a slight strengthening of Corollary 4. We can actually conclude that G has a cycle of length at least $\frac{5}{3}n + 1$.

Theorem 14 completely generalizes Theorem 13 and, like Theorem 10, is best possible in two ways. If $m = \frac{1}{2}(n - 5)$, the graph G_n has $n + \delta - \alpha + 1 = n - 1$ and G_n is not hamiltonian; in view of Conjecture 3 in Section 4, however, we do not believe that Theorem 14 is best possible for values of δ less than $\frac{3}{4}(n - 5)$. The graph H_n has $\delta \geq \frac{3}{4}(n - 1)$ and has a longest cycle of length $\frac{5}{4}(n - 1) + 2$, less than $\min(n, n + \delta - \alpha + 1) = \min(n, n + \frac{3}{4}(n - 1) - 2) = n$.

We now turn our attention to graphs with $t(G) = \tau \geq 2$. The inequality $\alpha \leq \frac{3}{2}n$, used to prove Theorem 3 from Theorem 9, suggests that our conclusions can be strengthened if $\tau > 1$. Since obviously $\alpha \leq n/(\tau + 1)$, Theorem 9 immediately implies our next result.

Corollary 15. Let G be a graph on $n \geq 3$ vertices with $t(G) = \tau \geq 1$. If $d(x) + d(y) + d(z) > s \geq n$ for all independent sets of vertices x, y, z, then G has a cycle of length at least $\min(n, n/(\tau + 1) + \frac{1}{3}s)$.

A special case of Corollary 15 may be a first small step toward proving the well-known conjecture that 2-tough graphs are hamiltonian [10].

Corollary 16. Let G be a 2-tough graph on $n \geq 3$ vertices. If $d(x) + d(y) + d(z) \geq n$ for all independent sets of vertices x, y, z, then G is hamiltonian.

3. **Proofs**

Proof of Theorem 5. Let C be a longest cycle of G with a fixed orientation. Assume C is not a dominating cycle of G. Then $G - V(C)$ has a nontrivial component H. Set $A = \bigcup_{v \in V(H)} N(v) - V(H)$ and let u_1, \ldots, u_k be the elements of A, occurring on \tilde{C} in consecutive order. Since G is 1-tough, G is 2-connected in particular, so $k \geq 2$. For $i = 1, \ldots, k$, set $u_i = u_i^+$ and $w_i = u_i^+$ (indices modulo k). Since C is a longest cycle, $u_i \neq u_{i+1}$ ($i = 1, \ldots, k$). If v is a vertex in $u_i\tilde{C}w_i$ such that $u_iv^+ \in E$, then v will be called an i-vertex; in particular, u_i is an
i-vertex \((i = 1, \ldots, k)\). Since \(G\) is 2-connected, there exist integers \(r\) and \(s\) with \(1 < r < s < k\) such that \(v_i\) and \(v_s\) are connected by a path \(P_{r,s}\) of length at least 3 with all internal vertices in \(H\). We make a number of observations.

(1) If \(x_i\) is an \(r\)-vertex and \(x_s\) an \(s\)-vertex, then there exists no \((x_i, x_s)\)-path which is internally disjoint from \(C\); in particular, \(x_i x_s \notin E\).

Assuming the contrary to (1), let \(P\) be an \((x_i, x_s)\)-path, internally disjoint from \(C\). Since \(x_i, x_s \notin A\), we have \(V(P) \cap V(H) = \emptyset\). Now \(v_i P_{r,s} v_s \hat{C} x_i^r x_s P x_i \hat{C} u_i x_i^r \hat{C} v_i\), denoting the cycle having as consecutive vertices the vertices of \(P_{r,s}\), \(v_i \hat{C} x_i^r\), \(u_i \hat{C} u_i\), and \(x_i^r \hat{C} v_i\), respectively, has length at least \(|V(C)| + 2\). This contradiction proves (1).

(2) If \(x_i\) is an \(r\)-vertex and \(x_s\) an \(s\)-vertex, then \(x_i u_i^r, u_i^r x_s \notin E\). If the contrary to (2) is assumed, a cycle longer than \(C\) can be indicated as in (1). The only difference is that now this cycle has length at least \(|V(C)| + 1\) instead of \(|V(C)| + 2\), since it omits the vertex \(u_i\) or \(u_s\) of \(C\).

(3) Let \(x_i\) be an \(r\)-vertex and \(x_s\) an \(s\)-vertex. If \(v \in x_i \hat{C} x_i^r, x_i v \in E\) and \(x_i v^+ \notin E\). To prove (3) assume, e.g. \(v \in x_i \hat{C} x_i^r, x_i v \in E\) and \(x_i v^+ \in E\). By (1), \(v \neq x_i\) and \(v^+ \neq u_i, x_i\) (since \(u_i\) is also an \(s\)-vertex). If \(v^+ \in x_i^r \hat{C} v_i\), then the cycle \(v_i P_{r,s} v_s \hat{C} v^+ x_i \hat{C} u_i x_i^r \hat{C} v_i\) has length at least \(|V(C)| + 2\), a contradiction. If \(v^+ \in u_i^r \hat{C} x_i^r\), then the cycle \(v_i P_{r,s} v_s \hat{C} x_i^r \hat{C} v^+ x_i \hat{C} u_i x_i^r \hat{C} v_i\) yields a similar contradiction.

(4) Let \(x_i\) be an \(r\)-vertex and \(x_s\) an \(s\)-vertex. If \(v \in x_i \hat{C} x_i^r\) and \(x_i v \in E - E(C)\), then \(x_i v^{++} \notin E\). Similarly, if \(v \in x_i \hat{C} x_i^r\) and \(x_i v \in E - E(C)\), then \(x_i v^{++} \notin E\).

The proof of (4) is similar to the proof of (3), except now the longer cycle has length \(|V(C)| + 1\) instead of \(|V(C)| + 2\).

Using observations (1) through (4) we now derive an upper bound for \(d(u_0) + d(x_r) + d(x_s)\), where \(x_r\) is an \(r\)-vertex, \(x_s\) an \(s\)-vertex and \(u_0\) an arbitrary vertex of \(H\). Define

\[
R_1(x_i) = \{v \in x_i \hat{C} x_i^r \mid x_i v^+ \in E\},
\]

\[
S_1(x_i) = \{v \in x_i \hat{C} x_i^r \mid x_i v \in E\}.
\]

\[
R_2(x_i) = \{v \in x_i \hat{C} x_i^r \mid x_i v \in E\},
\]

\[
S_2(x_i) = \{v \in x_i \hat{C} x_i^r \mid x_i v^+ \in E\}.
\]

\[
R_3(x_i) = \{v \in V - V(C) \mid x_i v \in E\},
\]

\[
S_3(x_i) = \{v \in V - V(C) \mid x_i v \in E\},
\]

\[
B(x_i, x_s) = R_1(x_i) \cup S_1(x_i) \cup R_2(x_i) \cup S_2(x_i).
\]

By (3), \(R_1(x_i) \cap S_1(x_s) = R_2(x_i) \cap S_2(x_s) = \emptyset\). By (1) and the fact that \(x_i, x_s \notin A\),
Long cycles in graphs with large degree sums

$R_s(x_s) \cap S_t(x_t) = V(H) \cap (R_s(x_s) \cup S_t(x_t)) = \emptyset$. Furthermore, for $i \in \{1, \ldots, k\} - \{r, s\}$, either u_i or v_i is not in $B(x_r, x_s)$. To see this, suppose e.g. $u_i \in R_i(x_i) \cup S_i(x_i)$. Then $x_i u_i E \in E$, since the assumption that $x_i u_i E \in E$ implies the existence of a cycle longer than C, containing the vertices of a (u_i, v_i)-path of length at least 2 with all internal vertices in H (cf. (1)). But then, by (4) with $v = v_i$, $x_i v_i E \in E$. Also, like $x_i u_i$, $x_i u_i E \in E$. It follows that $v_i \notin R_i(x_i) \cup S_i(x_i)$.

We conclude that

$$d(u_0) + d(x_r) + d(x_s) = d(u_0) + |R_1(x_1)| + |R_2(x_2)| + |R_3(x_3)| + |S_1(x_1)| + |S_2(x_2)| + |S_3(x_3)| \leq (k + |V(H)| - 1) + (|V(C)| - (k - 2)) + |R_3(x_3)| + |S_3(x_3)|$$

$$\leq (k + |V(H)| - 1) + (|V(C)| - (k - 2)) + (|V| - |V(C)|) = n + 1.$$

On the other hand, since (u_0, x_r, x_s) is an independent set,

$$d(u_0) + d(x_r) + d(x_s) = n.$$

It follows that u_0, and hence every vertex of H, is adjacent to all but at most one of the vertices in A. This implies the existence of a (u_i, v_i)-path $P_{i,j}$ of length at least 3 with all internal vertices in H for all $i, j \in \{1, \ldots, k\}$ with $i \neq j$. A number of conclusions now follow. We first note that (1) through (6) actually hold for arbitrary r and s with $1 \leq r < s \leq k$. Furthermore, $u_i \neq w_i$ ($i = 1, \ldots, k$). Also, it follows immediately from (2) that for $1 \leq r < s \leq k$ and $i \in \{1, \ldots, k\} - \{r, s\}$, u_i (instead of u_r or v_r) is not in $B(x_r, x_s)$, where x_r is an r-vertex and x_s an s-vertex.

From (5) and (6) we also deduce the following:

(7) If x_r is an r-vertex and x_s an s-vertex, then at most one vertex of $V(C) - \{u_i \mid i \in \{1, \ldots, k\}, i \neq r, s\}$ is not in $B(x_r, x_s)$ ($1 \leq r < s \leq k$).

The next three observations, where $s \in \{1, \ldots, k\}$, will facilitate the remainder of the proof.

(8) If $v \in u_{s+1, \tilde{C}u_s}$ and $u_s v \in E$, then $w_s v \notin E$.

Assuming the contrary, the cycle $w_s v \notin \tilde{C}u_{s+1, P_{s+1, u_s} \tilde{C}u_{s+1, \tilde{C}w_s}}$ has length at least $|V(C)| + 2$, a contradiction.

(9) If $v \in u_{s+1, \tilde{C}u_s}$ and $u_s v \in E$, then $w_s v \notin \tilde{w_s} v \notin E$.

The proof of (9) is similar to the proof of (8).

(10) If $v \in u_{s+1, \tilde{C}u_s}$ and $u_s v \in E$, then $w, v \notin \tilde{w_s} v \notin E$.

Assuming the contrary, the cycle $w, v \notin \tilde{C}u_{s+1, u_s \tilde{C}w_s}$, where $w = w_s$ or $w = w^\tau_s$, yields a contradiction.

Using observations (1) through (10) we now derive contradictions in all cases distinguished below. If $v \in V$, then by $N'(v)$ we denote the set of vertices x such that there is a (v, x)-path of length at least 1 with all internal vertices in $V - V(C)$. In particular, $N(v) \subseteq N'(v)$.
Case 1. For all \(i \in \{1, \ldots, k\} \),
\[
N'(u_i) \cap V(C) \subseteq \{u_i \} \cup A \quad \text{and} \quad N'(w_i) \cap V(C) \subseteq \{u_i \} \cup A.
\]
Suppose there exist integers \(r, s \) and vertices \(x, y \) such that \(1 \leq r < s \leq k \),
\(x \in u_r^+ \), \(y \in u_s^+ \), and \(xy \in E \). Since by the hypotheses of Case 1 \(u_x, u_y \notin E \), either \(u_x y^+ \) or \(u_y y^+ \) is in \(E \), otherwise \(x, y \notin B(u_x, u_y) \), contradicting (7).
Assume, without loss of generality, that \(u_x y^+ \in E \), i.e. \(x \) is an \(r \)-vertex. By (3) and (4), \(u_x y^+ \notin E \), and hence \(y, y^+ \notin B(u_x, u_y) \). This contradiction with (7) shows that in this case no edge, and similarly no path with all internal vertices in \(V - V(C) \), joins two vertices in different sets of the collection \(\{w_i \mid 1 \leq i \leq k\} \).
But then \(\omega(G - A) \geq |A| + 1 \), contradicting the fact that \(G \) is 1-tough.

Case 2. For some \(i \in \{1, \ldots, k\} \),
\[
N'(u_i) \cap V(C) \notin \{u_i \} \cup A \quad \text{or} \quad N'(w_i) \cap V(C) \notin \{w_i \} \cup A.
\]
Assume e.g. \(y \in N'(u_i) \), where \(y \in u_i \), \(r < s \), and \(|u_i \cdot y| \) is minimum. For convenience we also assume \(u_x, y \in E \); in case \(u_x \) and \(y \) are connected by a path of length at least 2 with all internal vertices in \(V - V(C) \), completely analogous arguments apply, since the path must be disjoint from \(H \). Note that by (1) and (2), \(y \neq u_x, u_x^+ \). Let \(x \) be the \(r \)-vertex in \(u_i \cdot y^+ \) that minimizes \(|x, y^+| \); possibly \(x = u_x \). Either \(x^+ = y^+ \) or \(x^+ = y \), otherwise \(x^+, x^+ y^+ \notin B(u_x, u_y) \), contradicting (7). We distinguish two subcases.

Case 2.1. \(x^+ = y^+ \).
Then \(u_x, y \notin E \). By (4), \(u_x y^+ \notin E \) and by (8) and (10), \(w_x y^+, w_y y^+ \notin E \). Hence \(w_x \) is not an \(s \)-vertex, otherwise \(y, y^+ \notin B(w_x, w_y) \), contradicting (7). Thus \(u_x, w_x \notin E \).
But then \(u_x, w_x \in E \), otherwise \(y, y^+ \notin B(u_x, u_y) \). Now \(x, w_x \notin E \), otherwise the cycle \(x, w_x, u_x, y, w_x, x \) is longer than \(C \). Also, by (9), \(x, w_x \notin E \). It follows that \(w_x, w_x^+ \notin B(x, u_x) \), a contradiction.

Case 2.2. \(x^+ = y \).

Case 2.2.1. \(u_x w_x^+ \notin E \).
By (8) and (9), \(x, w_x, x, w_x \notin E \). Thus \(u_x, w_x \in E \), otherwise \(w_x^-, w_x \notin B(x, u_x) \). In other words, \(w_x \) is an \(s \)-vertex. By (3) and (4), \(x, y^+, x, y^+ \notin E \). Recalling that \(x, w \notin E \) by (8), we conclude that \(u_x, y \notin E \), since otherwise \(y, y^+ \notin B(x, u_x) \). Now by (9) and (10), \(w_x y^+, w_x y^+ \notin E \). It follows that \(y, y^+ \notin B(x, w_x^+) \), a contradiction.

Case 2.2.2. \(u_x w_x^+ \in E \).
Then \(w_x \) is an \(s \)-vertex. Recall that, by (3) and (4), \(x, y^+, x, y^+ \notin E \). By (10), \(w_x y^+, w_x y^+ \notin E \). Hence \(w_x y^+ \in E \), otherwise \(y, y^+ \notin B(x, w_x) \). Now \(x, w \notin E \), otherwise
the cycle $x_i w_i \bar{C} y w y \bar{C} u_{s+1} P_{s+2, s+1} v_{s+1} \bar{C} x_r$ is longer than C. Also, $w_w \notin E$, otherwise the cycle $w_w \bar{C} u_{s+1} P_{s+2, s+1} v_{s+1} \bar{C} w_w$ is longer than C. It follows that $y_r^+, w_r^+ \notin B(x_r, w_r)$. Hence, by (7), $y_r^+ = w_r^+$. We now show that

(11) u_r is adjacent to all vertices in $u_r^+ \bar{C} u_{s+1}$.

Assuming the contrary, let v be the vertex in $u_r^+ \bar{C} u_{s+1}$ such that $u_r v \notin E$ and $|v u_{s+1}|$ is minimum. Then $v \in u_r^+ \bar{C} w_r$ and $u_r v^+ \in E$. By (4), $u_r v^+ \notin E$ and by (8), $u_r y_r^+ \notin E$. Hence $v^+, y_r^+ \notin B(u_r, u_r)$. This contradiction proves (11). Similarly we have

(12) u_i is adjacent to all vertices in $u_i^+ \bar{C} y_i$.

By (9), $u_i y_i^+ \notin E$. Recalling that $u_i y_i^+ \notin E$ we now note that for all $i \in \{1, \ldots, k\}$ the assumption $u_i y_i^+ \in E$ or $u_i y_i^+ \notin E$ leads to a contradiction by applying the above arguments with i in place of s. Thus $u_i y_i^+, u_i y_i^+ \notin E$ for all $i \in \{1, \ldots, k\}$ except r. By (3) and (4), $u_i y_i^+, u_i y_i^+ \notin E$. Hence $u_i y_r \in E$, for otherwise $y_r, y_r^+ \notin B(u_r, u_r) (i \in \{1, \ldots, k\})$. It now follows that (11) remains true if s is replaced by $i (i \in \{1, \ldots, k\} \setminus \{r\})$. By (7), $B(u_r, u_r) = V(C) - \{(y_r^+ \cup u_i) | i \in \{1, \ldots, k\} \setminus \{r\}\}$, implying that

$$\begin{align*}
N(u_r) \cap V(C) &= u_r^+ \bar{C} y_r \cup A \\
N(u_i) \cap V(C) &= u_i^+ \bar{C} u_{s+1} \cup A (i \in \{1, \ldots, k\} \setminus \{r\}).
\end{align*}$$

In particular, every vertex of $V(C) - \{(A \cup \{y\})\}$ is an i-vertex for some $i \in \{1, \ldots, k\}$. Using (1), (3) and (4) we conclude that no edge, and similarly no path with all internal vertices in $V - V(C)$, joins two vertices in different sets of the collection $\{u_i \bar{C} w_i | 1 \leq i \leq k, i \neq r\} \cup \{u_i \bar{C} y_r^+ \cup \{y_r^+, y_r^+\}\}$. But then $\omega(G - \{(A \cup \{y\})\}) \geq |A \cup \{y\}| + 1$, our final contradiction. □

Proof of Lemma 8. By assumption $V - V(C)$ is an independent set and a standard argument shows that A^+ is an independent set. Hence it suffices to show that no vertex in $V - V(C)$ is adjacent to a vertex in A^+. Let $A = N(v_0)$ consist of distinct vertices $x_1, x_2, \ldots, x_k (k \geq 2)$ on C such that $x_{i+1} x_i \bar{C} x_{i+2}$, $1 \leq i \leq k$ (indices mod k). Clearly v_0 is not adjacent to any vertex in A^+, i.e. $A \cap A^+ = \emptyset$. Suppose $v_1 \in V - V(C)$ and $v_1 x_i^+ \notin E$. Consider the following sets of vertices.

$$\begin{align*}
A_1 &= \{v \in x_1^+ \bar{C} x_k | v v^+ \in E\}, \\
A_2 &= \{v \in x_1^+ \bar{C} x_k | x_k^+ v \in E\}, \\
B_1 &= \{v \in x_1^+ \bar{C} x_1 | v_1 v \in E\}, \\
B_2 &= \{v \in x_1^+ \bar{C} x_1 | x_1^+ v^+ \in E\}, \\
D &= \{v \in V - V(C) | v^+ v \in E\}.
\end{align*}$$

Observe that for each $i, 1 \leq i \leq k - 1$, $x_i^+ \notin A_1$. This is clear if $i = 1$. Assuming $x_i^+ \in A_1$ for some $i \in \{2, \ldots, k - 1\}$, the cycle $v_1 x_i^+ \bar{C} x_1 v_0 x_i \bar{C} x_i v_1$ is a longer cycle than C, a contradiction. Since A^+ is an independent set, $x_i^+ \notin A_2$ for
It is easy to see that $x_1 \notin B_1$ and $v_0, v_1 \notin D$. But
$A_1 \cap A_2 = \emptyset$, for if $w \in A_1 \cap A_2$, then $x_1^+ v_1 w^+ \tilde{C}_k v_0 x_1^+ \tilde{C}_k w^+ \tilde{C}_k$ is a longer cycle
than C, a contradiction. Similarly $B_1 \cap B_2 = \emptyset$. Thus $|D| \leq n - |V(C)| - 2$ and
$|A_1| + |A_2| + |B_1| + |B_2| = |V(C)| - k$. Since $N(v_1) = A_1^+ \cup \{x_1^+\} \cup B_1$ and $v_1 x_k^+ \notin E$, $d(v_1) = |A_1| + |B_1| + 1$. Also $d(x_k^+) = |A_2| + |B_2| + |D|$. Thus
$$d(v_0) + d(v_1) + d(x_k^+) = k + |A_1| + |A_2| + |B_1| + |B_2| + |D| + 1 \leq n - 1.$$
However, v_0, v_1 and x_k^+ are independent, thus contradicting our assumption and
proving the lemma. \(\square\)

Outline proof of Theorem 9. Let C be a longest cycle in G. By Theorem 5, C is a
dominating cycle. Assume C is chosen such that $\text{max} \{d(v) \mid v \in V - V(C)\}$ is
maximum. If $V - V(C) = \emptyset$ there is nothing to prove. Thus we assume $V - V(C) = \{v_0, v_1, \ldots, v_i\}$, $d(v_0) \geq d(v_1) \geq \cdots \geq d(v_i)$. Let $A = N(v_0) = \{x_1, x_2, \ldots, x_k\}$, where $k \geq 2$ and $x_{i+1} \in x_i \tilde{C}_k x_{i+2}$, $1 \leq i < k$ (indices mod k). From
Lemma 8 we have $|V - V(C)| + |A^+| \leq \alpha$. Hence $|V(C)| \geq n + |A^+| - \alpha = n + d(v_0) - \alpha$. Thus it suffices to show that $d(v_0) \geq \frac{3s}{2}$. This is clearly true if $t \geq 2$.

Suppose $t = 1$, $d(v_0) < \frac{3s}{2}$ and consider x_1^+. Suppose $x_1^+ x_j^+ \in E$, where $2 \leq j \leq k$. Then the cycle $C' = x_1^+ x_j^+ \tilde{C}_k x_0 x_0 \tilde{C}_k x_1^+$ has $|V(C')| = |V(C)|$ but includes v_0 and
omits x_i^+. However, v_0, v_1 and x_i^+ are independent and thus $s \leq d(v_0) + d(v_1) + d(x_i^+)$. This implies $d(x_i^+) > \frac{3s}{2} > d(v_0)$, contradicting the choice of C. Thus we may assume $x_1^+ x_j^+ \notin E$ for $2 \leq j \leq k$. Since x_1^+ is not adjacent to any vertex in A^+ and $A^+ \cap A^{++} = \emptyset$, $d(x_1^+) \leq |V(C)| - 2d(v_0) + 1$. But then $n \leq d(x_1^+) + d(v_0) + d(v_1) = |V(C)| + 1 \leq n - 1$, a contradiction.

Finally, the proof for $t = 0$ is modelled along the lines of the proof of Theorem 5. Whenever a contradiction is obtained in the proof of Theorem 5 by finding a
longer cycle, we now find a contradiction either in the same way, or by finding a
cycle C' such that $|V(C')| = n - 1$ and $u_0 \in V - V(C')$ has $d(u_0) > d(v_0)$. The
argument, although quite lengthy and involved, is tedious and is thus omitted
here. The full proof can be found in the appendix of $[4]$.

Proof of Theorem 10. If G is hamiltonian we are done. Otherwise, as in the
proof of Theorem 9, let C be a longest cycle in G such that $\text{max} \{d(v) \mid v \in V - V(C)\}$ is maximum. By Theorem 7, C is a dominating cycle. Let v_0 be a vertex in $V - V(C)$ having maximum degree among all vertices of $V - V(C)$ and set $A = N(v_0) = \{x_1, x_2, \ldots, x_k\}$, where $k \geq 2$ and $x_{i+1} \in x_i \tilde{C}_k x_{i+2}$, $1 \leq i < k$ (indices mod k). As in the proof of Theorem 9, Lemma 8 implies that $|V(C)| \geq n + d(v_0) - \alpha$, so that it suffices to show that $d(v_0) \geq \frac{3s}{2}$. Suppose $d(v_0) < \frac{3s}{2}$ and
assume, without loss of generality, that $\min \{d(x_i^+) \mid 1 \leq i \leq k\} = d(x_i^+)$. Then for $i = 2, \ldots, k$ we have $d(x_i^+) \geq \frac{3s}{2}$, since $d(v_0) + d(x_i^+) + d(x_i^+) \geq s$. It follows that $x_i^+ x_i^+ \notin E$ for $i = 3, \ldots, k$, otherwise a cycle C' with $|V(C')| = |V(C)|$ exists that includes v_0 and omits x_i^+, contradicting the choice of C. Thus, defining $B(x_1^+, x_2^+)$.

\(\square\)
as in the proof of Theorem 5, we have that $x_1^+, \ldots, x_k^+ \notin B(x_1^+, x_2^+)$. But then
\[
d(v_v) + d(x_v^+) + d(x_v^+) = k + |B(x_v^+, x_v^+)| = k + (|V(C)| - (k - 2))
\]
\[= |V(C)| + 2 \leq n + 1 < s,
\]
a contradiction. \(\square\)

4. Conjectures

We begin with the following conjecture.

Conjecture 3. Let G be a 1-tough graph on $n \geq 3$ vertices such that $d(x) + d(y) + d(z) \geq s \geq n$ for all independent sets of vertices x, y, z. Then G contains a cycle of length at least $\min(n, \frac{1}{2}(3n + 1) + \frac{1}{2}s)$.

The graphs G_n show that Conjecture 3, if true, is best possible. Conjecture 3 would also imply the following generalization of Jung's Theorem (Theorem 2).

Conjecture 4. Let G be a 1-tough graph on $n \geq 13$ vertices such that $d(x) + d(y) + d(z) \geq \frac{1}{2}(3n - 14)$ for all independent sets of vertices x, y, z. Then G is hamiltonian.

The graph obtained from H_{13} by deleting a vertex of degree 4 shows that the requirement that $n \geq 13$ cannot be released.

We close by noting that an application of Theorem 7 and Lemma 8 leads to a simple proof of Jung's Theorem for graphs on at least 16 vertices. By applying Theorem 5 instead of Theorem 7 it is possible to obtain a new proof of Jung's entire theorem ($n \geq 11$). Details will appear elsewhere [2, 3].

References

70

D. Bauer et al.

