Spectral properties of the tandem Jackson network, seen as a quasi-birth-and-death process

Share/Save/Bookmark

Kroese, D.P. and Scheinhardt, W.R.W. and Taylor, P.G. (2004) Spectral properties of the tandem Jackson network, seen as a quasi-birth-and-death process. Annals of Applied Probability, 14 (4). pp. 2057-2089. ISSN 1050-5164

open access
[img]
Preview
PDF
233kB
Abstract:Quasi-birth-and-death (QBD) processes with infinite “phase spaces” can exhibit unusual and interesting behavior. One of the simplest examples of such a process is the two-node tandem Jackson network, with the “phase” giving the state of the first queue and the “level” giving the state of the second queue.

In this paper, we undertake an extensive analysis of the properties of this QBD. In particular, we investigate the spectral properties of Neuts’s R-matrix and show that the decay rate of the stationary distribution of the “level” process is not always equal to the convergence norm of R. In fact, we show that we can obtain any decay rate from a certain range by controlling only the transition structure at level zero, which is independent of R.

We also consider the sequence of tandem queues that is constructed by restricting the waiting room of the first queue to some finite capacity, and then allowing this capacity to increase to infinity. We show that the decay rates for the finite truncations converge to a value, which is not necessarily the decay rate in the infinite waiting room case.

Finally, we show that the probability that the process hits level n before level 0 given that it starts in level 1 decays at a rate which is not necessarily the same as the decay rate for the stationary distribution.
Item Type:Article
Additional information:Open Access
Copyright:© 2004 The Author(s)
Faculty:
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:http://purl.utwente.nl/publications/70356
Official URL:http://dx.doi.org/10.1214/105051604000000477
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 221545