Looking at the contents of these proceedings gives the reader a good impression of how this workshop was organized.

First there is an editorial by D.H. Owens and R.E. Skelton. In this editorial they tell the reader what actually is the basic idea behind this workshop; the modelling problem and the control design problem must not be regarded as independent. They illustrate this by a few examples where commonly used assertions on the modelling (like neglecting small terms in the transfer function of the open loop) give rise to very serious errors in the closed-loop behaviour (bad performance). They point out that modelling errors don’t need to be small, but they need to be appropriate to the controller. They conclude with an integrated design procedure.

Next there is the contribution of J. Ackermann (plenary session). Ackermann considers state space models of the type $x = A[\dot{\theta}]x + B[\dot{\theta}]u$, $y = Cx$, where θ is the vector of uncertain plant parameters. Under the assumption that θ is in a certain range it is shown that it is possible to construct a controller, in other words the closed-loop eigenvalues are in a specified region.

After the plenary session there are twenty contributions of participants of the workshop, divided up in four parts. In the following I will very briefly state the contents of the papers.

The first section deals with: **model structure considerations**. Contributors here are D.H. Owens and R.E. Skelton (deepening out their ideas), C.D. Johnson (design of an adaptive controller compensating parameter errors), K. Warwick (reducing the order of high order discrete time systems) and G. Rodriguez (estimating model errors by means of optimal smoothing).

The second section is called: **controller reduction**. Contributions are given by D.S. Bernstein and D.C. Hyland (optimal projection in the presence of state-, control- and measurement noise), J.S. Gibson and D.L. Mingori (near optimal finite dimensional compensator for flexible structures), B.D.O. Anderson (tackling the controller approximation problem with the help of a Hankel norm procedure), Ü. Özgüner and A. Iftar (discussing suboptimality of decentralized systems), M. Ikeda and D.D. Siljak (considering unconstrained and centrally constrained control in the field of large scale systems) and finally U.B. Desai (dealing with large-scale systems).

In the third section the contributors consider: **frequency domain viewpoints.** Here we have the papers of M.J. Grimble (H_∞ optimization embedded within an LQG minimization), A. Siderius and M.G. Safonov (robust stability and performance in S.I.S.O. feedback control with structured uncertainty), B.J. Bacon and A.E. Frazho (using the Hankel matrix in obtaining stochastic model reduction), M.J. Balas (with the help of residual mode filter, closed-loop exponential stability is achieved using a finite-dimensional controller for distributed parameters) and G.O. Correa and I. Postlethwaite (confidence sets are constructed for model uncertainties).

The last section is called: **Adaptive and other viewpoints.** These viewpoints are given by T. Runolfsson and S. Meerkov (giving a design algorithm of vibrational feedback control for a distributed parameter system), M. Corless (obtaining discrete-time Lyapunov min-max controllers for a class of uncertain discrete-time systems), R.K. Yedavalli (develops a design algorithm in order to achieve a trade-off between nominal performance and regulation robustness using perturbation bound analysis) and lastly there is the view of R.F. Curtain (a personal view on the usefulness of infinite dimensional models).

I hope that my approximation of these proceedings serves as a good model for the reader. The control device for anyone in search of what is happening on the modelling error concept is: read these proceedings. The same control device has to be derived from my model: if not, my model is a bad approximation.

Jan SCHUT
Faculty of Applied Mathematics
University of Twente
Enschede, Netherlands