A silicon-based electrical source of surface plasmon polaritons


Walters, R.J. and Loon, R.V.A. van and Brunets, I. and Schmitz, J. and Polman, A. (2009) A silicon-based electrical source of surface plasmon polaritons. Nature materials, 8 (12). pp. 1-4. ISSN 1476-1122

[img] PDF
Restricted to UT campus only
: Request a copy
Abstract:After decades of process scaling driven by Moore’s law, the silicon microelectronics world is now defined by length scales that are many times smaller than the dimensions of typical micro-optical components. This size mismatch poses an important challenge for those working to integrate photonics with complementary metal oxide semiconductor (CMOS) electronics technology. One promising solution is to fabricate optical systems at metal/dielectric interfaces, where electromagnetic modes called surface plasmon polaritons (SPPs) offer unique opportunities to confine and control light at length scales below 100 nm (refs 1, 2). Research groups working in the rapidly developing field of plasmonics have now demonstrated many passive components3, 4 that suggest the potential of SPPs for applications in sensing5 and optical communication6. Recently, active plasmonic devices based on III–V materials7, 8, 9 and organic materials10 have been reported. An electrical source of SPPs was recently demonstrated using organic semiconductors by Koller and colleagues11. Here we show that a silicon-based electrical source for SPPs can be fabricated using established low-temperature microtechnology processes that are compatible with back-end CMOS technology.
Item Type:Article
Copyright:© 2009 MacMillan
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:http://purl.utwente.nl/publications/69348
Official URL:https://doi.org/10.1038/nmat2595
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page

Metis ID: 264261