ON MAXIMUM CRITICALLY h-CONNECTED GRAPHS

H.J. KROL and H.J. VELDMAN

Department of Applied Mathematics, Twente University of Technology, Enschede,
The Netherlands

Received 13 February 1984
Revised 30 May 1984

Let h be an integer with $h \geq 2$. A graph G is called critically h-connected or h-critical if G is h-connected while, for every vertex v of G, the graph $G - v$ is not h-connected. \mathcal{C} denotes the class of all h-critical graphs and \mathcal{A} the class of all graphs of \mathcal{C} in which every vertex is adjacent to a vertex of degree h. \mathcal{C} and \mathcal{A} are the classes of maximum graphs in \mathcal{C} and \mathcal{A}, respectively. Entringer's characterization of \mathcal{C} for $h = 2$ shows that $\mathcal{C} \neq \mathcal{A}$ in case $h = 2$. Here \mathcal{A} is determined for each $h \geq 2$. Then it is shown that $\mathcal{C} = \mathcal{A}$ for $h = 3$ and it is conjectured that $\mathcal{C} = \mathcal{A}$ for each $h \geq 3$.

Terminology

We use [2] for basic terminology and notations, but speak of vertices and edges instead of points and lines. Accordingly we denote the edge set of a graph G by $E(G)$.

If G is a connected graph, then by a cut of G we mean a set of vertices of G whose deletion results in a disconnected graph. If T_1 and T_2 are cuts of G, then T_1 interferes with T_2 if at least two components of $G - T_1$ contain vertices of T_2. An h-cut is a cut of h elements. A vertex v of G is critical if $\kappa(G - v) < \kappa(G)$. G is called critically h-connected, or briefly h-critical, if $\kappa(G) = h$ and every vertex of G is critical.

If \mathcal{G} is a class of graphs, then the elements of \mathcal{G} are called \mathcal{G}-graphs. The set of graphs in \mathcal{G} with n vertices is denoted by \mathcal{G}_n. G is a maximum \mathcal{G}-graph if no \mathcal{G}-graph with $|V(G)|$ vertices has more edges than G. The set of maximum \mathcal{G}-graphs is denoted by \mathcal{G}_n. $\mu_{\mathcal{G}}(n)$ is the number of edges of graphs in \mathcal{G}_n.

Let h be a fixed integer with $h \geq 2$. By \mathcal{C} we denote the set of all h-critical graphs. \mathcal{A} is the subset of \mathcal{C} consisting of all h-connected graphs in which every vertex is adjacent to a vertex of degree h. The set \mathcal{B} is defined by $\mathcal{B} = \mathcal{C} - \mathcal{A}$. For a graph G, $M(G) = \{v \in V(G) \mid \deg_G v = h\}$, $K(G) = V(G) - M(G)$, $\rho(G) = \sum_{e \in M(G)} \deg_{M(G)} e$ and $B(G)$ is the set of edges of G with one end in $K(G)$ and the other in $M(G)$. For the sake of notational simplicity we have chosen not to express the fact that the above notions depend on h; unless h is specified, propositions involving the relevant notions will hold for each $h \geq 2$.

We use $[x]$ to denote the greatest integer less than or equal to x. 0012-365X/84/$3.00 \textcopyright 1984, Elsevier Science Publishers B.V. (North-Holland)
1. Introduction

Entringer [1] characterized $\tilde{\mathcal{G}}_n$-graphs for $h = 2$ and $n \geq 3$. In the proof of his characterization, which is by induction on n, he uses an upper bound for $\mu_{\tilde{\mathcal{G}}}(n)$ [1, Lemma 2]. It appears that, for $h = 2$, there are infinitely many $\tilde{\mathcal{G}}$-graphs which are not \mathcal{H}-graphs.

Here we first determine \mathcal{A} for each $h \geq 2$ (Section 2). Then for $h = 3$ it is proved, also by induction on n, that $\mu_{\mathcal{A}}(n) < \mu_{\tilde{\mathcal{G}}}(n)$ for all n, so that, in consequence, $\hat{\mathcal{G}} = \mathcal{A}$ (Section 3). Finally it is conjectured that $\hat{\mathcal{G}} = \mathcal{A}$ for each $h \geq 3$ (Section 4).

2. Characterization of \mathcal{A}-graphs

Throughout this section h will be a fixed integer with $h \geq 2$.

Noting that no h-connected graph with less than $h + 1$ vertices exists, we first determine \mathcal{A}_n for $h + 1 \leq n \leq 2h$. Define, for $h + 1 \leq n \leq 2h$, the graph H_n as follows:

(a) $V(H_n) = \{v_1, v_2, \ldots, v_n\}$;

(b) $N(v_1) = \{v_2, v_3, \ldots, v_{h+1}\}$;

(c) $N(v_2) = \{v_1, v_{n-h+2}, v_{n-h+3}, \ldots, v_n\}$;

(d) $\langle v_3, v_4, \ldots, v_n \rangle$ is complete.

Clearly, $H_n \in \mathcal{A}_n$.

Lemma 1. If $h + 1 \leq n \leq 2h$, then $\mu_{\mathcal{A}}(n) = \frac{1}{2}(n^2 - 5n + 4h + 4)$ and $\mathcal{A}_n = \{H_n\}$.

Proof. Let G be an \mathcal{A}_n-graph with $h + 1 \leq n \leq 2h$. Then G contains, by definition of \mathcal{A}, two adjacent vertices v_1 and v_2 with $\deg v_1 = \deg v_2 = h$. Hence

$$|E(G)| = 2h - 1 + |E(G - \{v_1, v_2\})|$$

$$\leq 2h - 1 + \binom{n-2}{2} = \frac{1}{2}(n^2 - 5n + 4h + 4). \quad (1)$$

Suppose equality holds in (1). Then $G - \{v_1, v_2\}$ is complete; furthermore, since G is h-connected and every vertex of G is adjacent to a vertex of degree h, one easily deduces that $N(v_1) \cup N(v_2) = V(G)$. These properties determine G up to isomorphism: $G \cong H_n$. \hfill \square

We proceed by deriving (for $n \geq 2h + 1$) an upper bound for the number of edges of an \mathcal{A}_n-graph G in case $|K(G)|$ has a prescribed value. Let the function f_n be defined by

$$f_n(x) = \frac{1}{2}(x^2 - 2nx + (2h - 1)n).$$

Lemma 2. Let G be an \mathcal{A}_n-graph with $|K(G)| = k$. Then $|E(G)| \leq f_n(k)$. Moreover, if $n \geq 2h + 1$ and $k \leq h - 1$, then $|E(G)| \leq f_n(h) - 1$ unless $h = 2$ and $n = 5$.

On maximum critically h-connected graphs

Proof. Let G be an \mathcal{A}_n-graph with $|K(G)| = k$. Then

$$
|E(G)| = |E(K(G))| + |E(M(G))| + |B(G)| \\
\leq \binom{k}{2} + \frac{1}{2} \rho(G) + \sum_{v \in M(G)} (h - \deg_{M(G)} v) \\
= \frac{1}{2} k(k-1) + h(n-k) - \frac{1}{2} \rho(G). \quad (2)
$$

Since $G \in \mathcal{A}$, $\rho(G) \geq |M(G)| = n-k$. Thus

$$
|E(G)| \leq \frac{1}{2} k(k-1) + h(n-k) - \frac{1}{2} (n-k) = f_n(k),
$$

proving the first part of the lemma.

Now let $n \geq 2h+1$ and assume first that $k \leq h-2$. Then

$$
|E(G)| = \frac{1}{2} \left(\sum_{v \in K(G)} \deg_G v + \sum_{v \in M(G)} \deg_G v \right) \\
\leq \frac{1}{2}(k(n-1) + h(n-k)) = \frac{1}{2}(n-1 \cdot h)k + hn \\
\leq \frac{1}{2}(n-1-h)(h-2) + hn = f_n(h) - \frac{1}{2}(n-h-2) \\
= f_n(h) - 1 \quad \text{unless } h = 2 \text{ and } n = 5.
$$

Assume next that $k = h-1$ (and $n \geq 2h+1$). Then, since G is h-connected, $G - K(G)$ is connected, implying that $|E(M(G))| \geq |V(M(G))| = 1$, or, equivalently, $\rho(G) \geq 2(n-h)$. From (2) we deduce that

$$
|E(G)| \leq \frac{1}{2}(h-1)(h-2) + h(n-h+1) - (n-h) \\
= f_n(h) - \frac{1}{2}(n-h-2) \\
= f_n(h) - 1 \quad \text{unless } h = 2 \text{ and } n = 5. \quad \Box
$$

In the following lemma an upper bound for the cardinality of $|K(G)|$ in an \mathcal{A}_n-graph G is obtained. Define

$$
k_n = \begin{cases}
\left[\frac{h-1}{h} \right] n & \text{if } n \not\equiv h \mod 2h, \\
\frac{h-1}{h} n - 1 & \text{if } n \equiv h \mod 2h.
\end{cases}
$$

Lemma 3. If G is an \mathcal{A}_n-graph, then $|K(G)| \leq k_n$.

Proof. Let G be an \mathcal{A}_n-graph. Every vertex of $K(G)$ has a neighbour in $M(G)$, so

$$
|B(G)| \Rightarrow |K(G)|. \quad (3)
$$

On the other hand, every vertex of $M(G)$ has at most $h-1$ neighbours in $K(G)$, since each vertex of $M(G)$ also has at least one neighbour in $M(G)$. Hence

$$
|B(G)| \leq (h-1)|M(G)| = (h-1)(n-|K(G)|). \quad (4)
$$
From (3) and (4) it follows that $|K(G)| \leq (h-1)(n-|K(G)|)$, or, equivalently,

$$|K(G)| \leq \frac{h-1}{h} n. \quad (5)$$

To complete the proof we show that the inequality (5) is strict if $n = h \mod 2h$. Assume that $n = 2hi + h$ and (5) holds with equality. Then $|M(G)| = 2i + 1$. Since (4) also holds with equality, the graph $\langle M(G) \rangle$ is regular of degree 1, implying that $|M(G)|$ is even, a contradiction. □

Lemmas 2 and 3 enable us to determine an upper bound for $\mu_{\mathcal{A}}(n)$ in case $n \geq 2h + 1$. Define

$$a(n) = [f_n(k_n)].$$

Lemma 4. Let G be an \mathcal{A}_n-graph such that $n \geq 2h + 1$ and either $h \neq 2$ or $n \neq 5$. Then $|E(G)| \leq a(n)$. Moreover, unless $h = 3$ and $n = 7$, $|E(G)| = a(n)$ only if $|K(G)| = k_n$; if $h = 3$ and $n = 7$, then $|E(G)| = a(n)$ only if $|K(G)| \in \{k_n - 1, k_n\}$.

Proof. Let G satisfy the conditions of the lemma. For $x > h$, $f_n(x)$ is an increasing function of x. Since $n \geq 2h + 1$, $k_n \geq h$. By using Lemmas 2 and 3 it follows that

$$|E(G)| \leq [f_n(k_n)]$$

and, if $k_n = h$,

$$|E(G)| = [f_n(k_n)] \text{ only if } |K(G)| = k_n.$$

Now assume $k_n \geq h + 1$. For every x we have

$$f_n(x) - f_n(x - 1) = x - h - \frac{1}{2},$$

implying that $[f_n(k_n)] = [f_n(k_n - 1)]$ if and only if $k_n = h + 1$ and $f_n(k_n)$ is not integer-valued, i.e., if and only if $h = 3$ and $n = 7$, as is easily checked. The result follows. □

We finally show that $\mu_{\mathcal{A}}(n) = a(n)$ for all $n \geq h + 1$ and characterize \mathcal{A}. Let T_7, T'_7 be the graphs depicted in Fig. 1 and define a class \mathcal{K} of graphs
by the assertion that a graph \(G \) with \(n \) vertices belongs to \(\mathcal{H} \) if and only if the following requirements are met:

(i) \(n \geq 2h + 1 \);

(ii) \(|K(G)| = k_n \) and \(\langle K(G) \rangle \) is complete;

(iii) if \(n - k_n \) is even, then \(\langle M(G) \rangle = \frac{1}{2}(n - k_n)P_2 \); if \(n - k_n \) is odd, then \(\langle M(G) \rangle = P_3 \cup \frac{1}{2}(n - k_n - 3)P_2 \);

(iv) every vertex of \(K(G) \) is incident with at least one edge of \(B(G) \);

(v) if \(v_1 \) and \(v_2 \) are the vertices of a component of \(\langle M(G) \rangle \) isomorphic to \(P_2 \), then \(|(N(v_1) \cup N(v_2)) \cap K(G)| \geq h \).

Note that \(\mathcal{H}_n = \emptyset \) if \(h = 2 \) and \(n = 5 \); if \(h \neq 2 \) or \(n \neq 5 \), then \(\mathcal{H}_n \neq \emptyset \) for all \(n \geq 2h + 1 \). In Fig. 2 an element of \(\mathcal{H}_{2h+1} \) is sketched for \(h = 3 \) and \(j \in \{1, 2, \ldots, 2h\} \); \(i \) is an arbitrary positive integer.

For \(h = 2 \), \(\mathcal{H}_n \)-graphs are unique up to isomorphism unless \(n \equiv 2 \mod 4 \) and \(n \neq 6 \). For \(h \geq 3 \), \(\mathcal{H}_n \)-graphs are unique up to isomorphism if and only if \(n \equiv 0 \mod 2h \) or \(n \equiv -(h - 1) \mod 2h \). For relevant values of \(h \) and \(n \), nonisomorphic \(\mathcal{H}_n \)-graphs can be obtained from one another by repeatedly applying the following operation: find two vertices \(u_1 \) and \(u_2 \) of degree greater than \(k_n \) such that \(u_1 \) has at least two neighbours of degree \(h \), \(v_1 \) and \(v_2 \) say; replace the edge \(u_1v_1 \) by the edge \(u_2v_1 \).

Define

\[\mathcal{H}' = \mathcal{H} \cup \{H_n \mid h + 1 \leq n \leq 2h \}. \]

Theorem 5. \(\mu_n(n) = a(n) \) for \(n \geq h + 1 \) and

\[\mathcal{A} = \begin{cases} \mathcal{H}' & \text{if } h \neq 2, 3, \\ \mathcal{H}' \cup \{C_3\} & \text{if } h = 2, \\ \mathcal{H}' \cup \{T_7, T_7'\} & \text{if } h = 3. \end{cases} \]

Proof. For \(h + 1 \leq n \leq 2h \) we are through by Lemma 1 and the observation that

\[f_n(k_n) = f_n(n - 2) = \frac{1}{2}(n^2 - 5n + 4h + 4). \]

Now let \(n \geq 2h + 1 \). We distinguish three cases.

Case 1. \(h \neq 2 \) or \(n \neq 5 \) and \(h \neq 3 \) or \(n \neq 7 \). Then \(\mathcal{H}_n \neq \emptyset \). Since every \(\mathcal{H}_n \)-graph is an \(\mathcal{A}_n \)-graph with \(a(n) \) edges and, by Lemma 1, \(\mu_n(n) \leq a(n) \), it follows that \(\mu_n(n) = a(n) \). It remains to be shown that \(\mathcal{A}_n \subset \mathcal{H}_n \).

Let \(G \) be an \(\mathcal{A}_n \)-graph. Then \(\langle K(G) \rangle \) is complete, otherwise an \(\mathcal{A}_n \)-graph with more edges than \(G \) would be obtained by joining two nonadjacent vertices of \(K(G) \) by an edge. Now inequality (2) holds with equality:

\[|E(G)| = \frac{1}{2}|K(G)|(|K(G)| - 1) + h(n - |K(G)|) - \frac{1}{2}|p(G)|. \]

By Lemma 4, \(|K(G)| = k_n \). Substituting \(|K(G)| \) by \(k_n \) and \(|E(G)| \) by \(a(n) \), one deduces from (6) that \(p(G) = n - k_n = |M(G)| \) if \(n - k_n \) is even and \(p(G) = n - k_n + 1 = |M(G)| + 1 \) if \(n - k_n \) is odd. Since \(\delta(\langle M(G) \rangle) = 1 \) by definition of \(\mathcal{A} \), it
follows that \(\langle M(G) \rangle = \frac{1}{2}(n - k_n)P_2 \) if \(n \) is even and \(\langle M(G) \rangle = P_3 \cup \frac{1}{2}(n - k_n - 3)P_2 \) if \(n \) is odd. Using the definition of \(\mathcal{A} \) once more, we conclude that \(G \in \mathcal{A} \).

Case 2. \(h = 2 \) and \(n = 5 \). Clearly, \(C_5 \) is the only \(\mathcal{A} \)-graph with five vertices.

Hence \(\mu_{\mathcal{A}}(5) = 5 = a(5) \).

Case 3. \(h = 3 \) and \(n = 7 \). By Lemma 4, \(\mu_{\mathcal{A}}(7) \leq a(7) = 13 \). All graphs in \(\mathcal{H}_7 \cup \{ T_7, T_7' \} \) are \(\mathcal{A} \)-graphs with 13 edges. Conversely, suppose \(G \) is an \(\mathcal{A} \)-graph with 13 edges. By Lemma 4, \(|K(G)| = k_r = 4 \) or \(|K(G)| = k_r - 1 = 3 \). If \(|K(G)| = 4 \), then, like in Case 1, \(G \in \mathcal{A} \). If \(|K(G)| = 3 \), then (6) implies that \(\rho(G) = 4 = |M(G)| \), so that \(\langle M(G) \rangle = 2P_2 \). Since \(G \in \mathcal{A} \), it follows that \(G \cong T_7 \) or \(G \cong T_7' \).

Theorem 5 contains [1, Lemma 2].

3. Characterization of \(\mathcal{G} \)-graphs for \(h = 3 \)

Assume throughout this section that \(h = 3 \). We shall present some evidence for the following result.

Theorem 6. \(\mu_{\mathcal{G}}(n) = a(n) \) for \(n \geq 4 \) and \(\mathcal{G} = \mathcal{A} \).

Theorem 6 is equivalent to the assertion that \(\mu_{\mathcal{G}}(n) < a(n) \) for \(n \geq 4 \). It is, however, convenient to prove the following slightly stronger statement.

Lemma 7.

\[
\mu_{\mathcal{G}}(n) \leq \begin{cases}
 a(n) - 1 & \text{if } n \not\equiv 0 \pmod{6}, \\
 a(n) - 2 & \text{if } n \equiv 0 \pmod{6}.
\end{cases}
\]

To get an impression of the proof of Lemma 7, which is by induction on \(n \), let \(G \) be a \(\mathcal{G} \)-graph. Then \(G \) contains a vertex \(p \) with \(N(p) \subseteq K(G) \). Let \(S \) be a 3-cut of \(G \) containing \(p \). In the proof several cases with respect to the structure of \(\langle S \rangle \) are distinguished. In each case two smaller \(\mathcal{G} \)-graphs are constructed from \(G \). Thereby an upper bound for \(|E(G)| \) is obtained via the induction hypothesis. For the proof in full detail, which is quite long, we refer to [3]. Here we only treat the case that \(\langle S \rangle \) is complete. More precisely, we shall prove the following lemma.

Lemma 8. Let \(G \) be a \(\mathcal{G}_n \)-graph which contains a 3-cut \(S = \{ p, q_1, q_2 \} \) such that \(N(p) \subseteq K(G) \) and \(\langle S \rangle \) is complete. If, for all \(m < n \),

\[
\mu_{\mathcal{G}}(m) \leq \begin{cases}
 a(m) - 1 & \text{if } m \not\equiv 0 \pmod{6}, \\
 a(m) - 2 & \text{if } m \equiv 0 \pmod{6},
\end{cases}
\]

then

\[
|E(C)| \leq \begin{cases}
 a(n) - 1 & \text{if } n \not\equiv 0 \pmod{6}, \\
 a(n) - 2 & \text{if } n \equiv 0 \pmod{6}.
\end{cases}
\]
Before proving Lemma 8 we state four additional lemmas, two of which are adopted from [4].

Lemma 9 (Veldman [4]). If T_1 and T_2 are distinct minimum cuts of a graph, then T_1 interferes with T_2 if and only if T_2 interferes with T_1.

The following lemma is a special case of [4, Lemma 1].

Lemma 10 (Veldman [4]). If v is a vertex of degree 3 in a 3-connected graph G, then $N(v)$ is the only 3-cut of G contained in $\{v\} \cup N(v)$.

Lemma 10 is applied in the proof of the next lemma.

Lemma 11. If v is a vertex of degree 3 in a \mathcal{C}-graph, then $\langle N(v) \rangle$ is not complete.

Proof. Let G be a \mathcal{C}-graph, v a vertex of G of degree 3 and U a 3-cut of G containing v. By Lemma 10, U contains a vertex which is not in $\{v\} \cup N(v)$. Hence $N(v)$ interferes with U. By Lemma 9, U also interferes with $N(v)$. In particular, $N(v)$ contains a pair of nonadjacent vertices. \square

Lemma 12. If some vertex of an \mathcal{A}_{6k}-graph $G(k \geq 2)$ has at least two neighbours in $M(G)$, then $|E(G)| \leq a(6k) - 2$.

Proof. Let G satisfy the conditions of the lemma. From Lemma 3 and its proof it is apparent that $|K(G)| \leq 4k - 1$. Hence

$$|E(G)| \leq \binom{|K(G)|}{2} + 3|M(G)| \leq \frac{1}{2}(4k - 1)(4k - 2) + 3(2k + 1) = 8k^2 + 4a(6k) - 3k + 4 \leq a(6k) - 2. \quad \square$$

Although the upper bound in Lemma 12 is far from sharp, it is all we need in the proof of Lemma 8 (and Lemma 7).

Proof of Lemma 8. Assume that all conditions of Lemma 8 are satisfied. Let $\{Q_1, Q_2\}$ be a partition of $V(G) - S$ such that $\langle C_i \rangle$ is a disjoint union of one or more components of $G - S$ ($i = 1, 2$). Construct from G the graphs G_1 and G_2 as depicted in Fig. 3. It is easily seen that G_1 and G_2 are 3-connected. Since $\langle S \rangle$ is complete, no 3-cut of G interferes with S, so that, by Lemma 9, S interferes with no 3-cut of G. Hence if U is a 3-cut of G with $U \cap Q_i \neq \emptyset$, then $U \subset Q_i \cup S$, implying that U is a 3-cut of G_i too ($i = 1, 2$). Thus all vertices of Q_i, being critical in G, are also critical in G_i ($i = 1, 2$). The remaining vertices of G_i, having a neighbour of degree 3, are critical too ($i = 1, 2$). Hence G_1 and G_2 are \mathcal{C}-graphs. From Lemma 11 one easily deduces that $|Q_i| \geq 3$, so that $|V(G_i)| < |V(G)|$ ($i = 1, 2$). If $G_i \in \mathcal{A}$, then $|E(G_i)| \leq a(|V(G_i)|)$ by Theorem 5; if $G_i \in \mathcal{B}$, then
\[|E(G_1)| \leq a(|V(G_1)|) \] by the conditions of Lemma 8. Looking at Fig. 3 we now deduce that
\[
|E(G)| \leq |E(G_1)| + |E(G_2)| - 13 \\
\leq a(|V(G_1)| - 2) + a(n - |V(G_1)| - 2) - 13 \\
= \max_{1 \leq x \leq n-h} \{a(x+7) + a(n-x) - 13\}.
\]

Let \(\phi_n(x) = a(x+7) + a(n-x) - 13 \). It is easily checked that, if \(1 \leq i+j \leq (n-1)/2 - 3 \), \(\phi_n(i+j) \) is a decreasing function of \(i \) for each \(j \) with \(0 \leq j \leq 5 \). Hence
\[
|E(G)| \leq \max_{1 \leq x \leq \min\{6, [(n-1)/2]-3\}} \phi_n(x).
\]

Straightforward checking yields that, for \(1 \leq x \leq \min\{6, [(n-1)/2]-3\} \),
\[
\phi_n(x) \leq a(n) - 2 \quad \text{if} \ n = 0 \mod 6;
\]

furthermore, for \(1 \leq x \leq \min\{6, [(n-1)/2]-3\} \),
\[
\phi_n(x) \leq a(n) - 1 \quad \text{if} \ n \neq 0 \mod 6,
\]
except in three cases. We show that \(|E(G)| \leq a(n) - 1 \) in each of these cases.

Case 1. \(n = 6k + 1, \ x = 1 \ (k \geq 2) \): \(\phi_{6k+1}(1) = a(6k+1) + 2 \).

In Fig. 3 there are two analogous possibilities corresponding to \(x = 1 \): either \(|V(G_1)| = 8 \) and \(|V(G_2)| = 6k \), or \(|V(G_1)| = 5k \) and \(|V(G_2)| = 8 \). We proceed with the first possibility. \(G_1 \notin \mathcal{A}_h \), since \(K(G_1) \) contains a vertex with two neighbours of degree 3. Since \(\mu_{6h}(8) \leq a(8) - 1 \), it follows that \(|E(G_1)| \leq a(8) - 1 \). From Lemma 12 and the fact that \(\mu_{6h}(6k) \leq a(6k) - 2 \) we deduce that \(|E(G_2)| \leq a(6k) - 2 \). Thus instead of \(|E(G)| \leq \phi_{6k+1}(1) \) we reach the stronger conclusion that
\[
|E(G)| \leq \phi_{6k+1}(1) - 3 = a(6k+1) - 1.
\]

Case 2. \(n = 6k + 1, \ x = 5 \ (k \geq 2) \): \(\phi_{6k+1}(5) = a(6k+1) - 12k + 26 \).
\[\phi_{6k+1}(5) > a(6k+1) - 1 \text{ only if } k = 2. \] Then, however, we are back in Case 1, since \(\phi_{13}(5) = \phi_{13}(1). \)

Case 3. \(n = 6k + 3, x = 1 \) (\(k \geq 1 \)): \(\phi_{6k+3}(1) = a(6k+3) + 1. \)

Then in Fig. 3 either \(|V(G_1)| = 8 \text{ and } |V(G_2)| = 6k + 2 \), or \(|V(G_1)| = 6k + 2 \text{ and } |V(G_2)| = 8 \). In particular, \(|V(G_i)| = 2 \text{ mod } 6 \) (\(i = 1, 2 \)). Since \(K(G_i) \) contains a vertex with two neighbours of degree 3, it follows that \(G_i \not\in \mathcal{A} \) (\(i = 1, 2 \)). Thus, in fact,

\[|E(G)| \leq \phi_{6k+3}(1) - 2 = a(6k + 3) - 1. \]

The proof is completed by verifying the following inequalities:

\[
\begin{align*}
\phi(6k + 1, 7) &\leq a(6k + 1) - 1 \quad (k \geq 3), \\
\phi(6k + 1, 11) &\leq a(6k + 1) - 1 \quad (k \geq 3), \\
\phi(6k + 3, 7) &\leq a(6k + 3) - 1 \quad (k \geq 3).
\end{align*}
\]

4. Discussion

In Section 3 it appeared that \(\mu_{\mathcal{A}}(n) < \mu_{\mathcal{A}}(n) \) for \(h = 3 \). For large values of \(h \), \(\mathcal{A}_n \)-graphs have a very high edge density. We expect that, for increasing values of \(h \), \(\mu_{\mathcal{A}}(n) \) will grow more rapidly than \(\mu_{\mathcal{A}}(n) \), leading us to the following conjecture.

Conjecture 13. For all \(h \geq 3 \), \(\mu_{\mathcal{A}}(n) = a(n) \) (\(n \geq h + 1 \)) and \(\mathcal{G} = \mathcal{A} \).

References

