EXISTENCE OF D_λ-CYCLES AND D_λ-PATHS

H.J. VELDMAN

Department of Applied Mathematics, Twente University of Technology, Enschede, the Netherlands

Received 4 March 1982
Revised 28 May 1982

A cycle C of a graph G is called a D_λ-cycle if every component of $G - V(C)$ has order less than λ. A D_λ-path is defined analogously. In particular, a D_1-cycle is a hamiltonian cycle and a D_1-path is a hamiltonian path. Necessary conditions and sufficient conditions are derived for graphs to have a D_λ-cycle or D_λ-path. The results are generalizations of theorems in hamiltonian graph theory. Extensions of notions such as vertex degree and adjacency of vertices to subgraphs of order greater than 1 arise in a natural way.

1. Introduction

We employ the terminology of Bondy and Murty [3] and consider only simple graphs.

In [2], Bondy stated a sufficient condition for a graph G to have a cycle C such that $G - V(C)$ contains no K_k. For $k = 1$, it coincides with Ore's condition for the existence of a hamiltonian cycle. Here we introduce another kind of generalized hamiltonian cycle. A cycle C of a graph G is a D_λ-cycle if all components of $G - V(C)$ have order less than λ. Alternatively, C is a D_λ-cycle of G if and only if every connected subgraph of order λ of G has at least one vertex with C in common. Thus a D_λ-cycle dominates all connected subgraphs of order λ. Analogously, a path P of G is a D_λ-path if every component of $G - V(P)$ has order less than λ. Graphs containing a D_λ-cycle (D_λ-path) will be called D_λ-cyclic (D_λ-traceable). A D_1-cycle (D_1-path) is the same as a hamiltonian cycle (hamiltonian path). D_2-cycles were studied in [6].

In subsequent sections, existence theorems for D_λ-cycles are proved. In [6], most of them were already proved for $\lambda = 2$. We will henceforth refrain from referring to these special cases, unless this is essential. Parallel results on D_λ-paths can be obtained, using the following obvious lemma.

Lemma 1. A graph G is D_λ-traceable if and only if $G \cup K_1$ is D_λ-cyclic.

The theorems derived are generalizations of known results in hamiltonian graph theory. A corresponding remark can be made about the proof techniques used. Some of the results in Section 3 are closely related to Bondy's work [2].
Extensions to subgraphs of order greater than 1 of concepts such as adjacency of vertices, independence number and vertex degree arise in correspondence with the generalization of hamiltonian cycles to D_λ-cycles.

2. A necessary condition in terms of cut sets

To start with, we generalize a necessary condition for the existence of a hamiltonian cycle.

Theorem A [3, Theorem 4.2]. If a graph G is hamiltonian, then, for every nonempty proper subset S of $V(G)$,

$$\omega(G - S) \leq |S|.$$

Denote by $\omega_\lambda(G)$ the number of components of G of order at least λ. Theorem A is then a special case ($\lambda = 1$) of

Theorem 1. If a graph G is D_λ-cyclic, then, for every nonempty proper subset S of $V(G)$,

$$\omega_\lambda(G - S) \leq |S|.$$

The proof, being an easy extension of the proof of [6, Theorem 1], is omitted.

For future reference we denote by \mathcal{H}_λ the class of graphs not satisfying the necessary condition of Theorem 1. Thus G is in \mathcal{H}_λ iff, for some nonempty proper subset S of $V(G)$, $\omega_\lambda(G - S) > |S|$.

3. Sufficient conditions involving subgraph degrees

We now turn our attention to sufficient conditions for the existence of D_λ-cycles. One of the earliest results in hamiltonian graph theory to be generalized here is due to Dirac.

Theorem B [3, Theorem 4.3]. If G is a graph with $\nu \geq 3$ and $\delta \geq \frac{\nu}{2}$, then G is hamiltonian.

We also mention a result of Chvátal and Erdős.

Theorem C [4, Theorem 1]. If G is a k-connected graph with $\nu \geq 3$ and $\alpha \leq k$, then G is hamiltonian.

Bondy proved a common generalization of Theorems B and C.
Theorem D [2, Theorem 2]. Let G be a k-connected graph with $v \geq 3$ such that, for every $k + 1$ mutually nonadjacent vertices u_0, u_1, \ldots, u_k of G,

$$
\sum_{i=0}^{k} d(u_i) > \frac{1}{2}(k + 1)(v - 1).
$$

Then G is Hamiltonian.

In order to extend Theorems B, C and D to results on D_λ-cycles for $\lambda > 1$ we need some additional definitions. As in [6], two subgraphs H_1 and H_2 of a graph G are said to be close in G if they are disjoint and there is an edge of G joining a vertex of H_1 and one of H_2; if no such edge exists in G, then H_1 and H_2, provided they are disjoint, are remote in G. Thus, if H_1 and H_2 both consist of exactly one vertex, H_1 and H_2 are close (remote) iff the corresponding vertices are adjacent (nonadjacent). By $\alpha_k(G)$ (or just α_k) we denote the maximum number of mutually remote connected subgraphs of order λ of G. Thus α_1 coincides with the independence number α. The degree of a subgraph H of G, denoted $d_{\ell}(H)$ or $d(H)$, is the number of vertices in $V(G) - V(H)$ adjacent to one or more vertices of H. In other words, considering vertices as subgraphs of order 1, $d(H)$ is the number of vertices of G close to H. If H consists of a single vertex, then $d(H)$ is just the degree of this vertex. The minimum degree of connected subgraphs of order λ will be denoted δ_λ, so that $\delta_1 = \delta$. If Q is an oriented cycle or path in a graph and u and v are vertices on Q, then $\tilde{O}[u, v]$ and $\tilde{O}[v, u]$ denote, respectively, the segment of Q from u to v and the reverse segment from v to u. Furthermore, $\tilde{O}(u, v):=\tilde{O}[u, v]\setminus\{u\}$, $\tilde{O}[v, u]:=\tilde{O}[u, v]\setminus\{v\}$ and $\tilde{O}(u, v):=\tilde{O}[u, v]\setminus\{u, v\}$. Three more defining relations are obtained by reversing the arrows in the previous sentence.

We are now ready to prove a generalization of Theorem C.

Theorem 2. Let k and λ be positive integers such that either $k \geq 2$ or $k = 1$ and $\lambda \leq 2$. If G is a k-connected graph, other than a tree (in case $k = 1$), with $\alpha_k \leq k$, then G is D_λ-cyclic.

Proof. By contraposition. Let G be a k-connected non-D_λ-cyclic graph other than a tree. We will show that $\alpha_k > k$. Put $t + 1 = \min\{i \mid G$ is D_i-cyclic$\}$, so that $t < \lambda$. Let C be a longest D_{t+1}-cycle among all D_{t+1}-cycles C' of G for which $\omega_i(G - V(C'))$ is minimum. As in the proof of [6, Theorem 4] one shows that C has length at least $k + 1$. Fix an orientation on C. By assumption, C is a D_{t+1}-cycle, but not a D_t-cycle of G. Hence $G - V(C)$ has a component H_0 of order t. All vertices of G close to H_0 are on C and, since G is k-connected and $|V(C)| > k$, we have that $d(H_0) > k$. Let v_1, \ldots, v_k be k vertices of C close to H_0. For $i = 1, \ldots, k$, let u_{0i} be a vertex of H_0 adjacent to v_i (for $i \neq j$, u_{0i} and u_{0j} may coincide). Assume that v_1, \ldots, v_k occur on C in the order of their indices and let u_{i1} be the immediate successor of v_i on C ($i = 1, \ldots, k$). It will prove possible to
choose, for $i = 1, \ldots, k$, a subgraph H_i of G satisfying the following requirements:

(i) H_i is connected and has order t.

(ii) $H_i \cap C = \tilde{C}[u_{i1}, u_{i2}]$, where u_{i2} is a vertex of $\tilde{C}[u_{i1}, v_i]$ chosen in such a way that

(iii) The length of $\tilde{C}[u_{i1}, u_{i2}]$ is minimum, i.e. if H is a connected subgraph of order t of G with $H \cap C = \tilde{C}[u_{i1}, w_i]$, then $\tilde{C}[u_{i1}, u_{i2}]$ is a subpath of $\tilde{C}[u_{i1}, w_i]$. Note that u_{i1} and u_{i2} may coincide, in other words $\tilde{C}[u_{i1}, u_{i2}]$ may have length 0.

If $k = 1$, then C may have length 3 and the existence of a subgraph H_1 with the above properties is guaranteed only if $t \leq 2$.

If $k \geq 2$, then, for $1 \leq i \leq k$,

(a) a subgraph H_i with the mentioned properties exists, and

(b) v_{i+1} does not belong to $\tilde{C}[u_{i1}, u_{i2}]$ (indices mod k).

Assuming the contrary to (a) or (b), consider the cycle

$$C' = v_i u_{i0} \bar{P}[u_{i0}, u_{i0+i}] u_{i0+i} v_{i+1} \tilde{C}[v_{i+1}, v_i],$$

where \bar{P} is a $u_{i0} u_{i0+i}$-path within H_0 (degenerate if $u_{i0} = u_{i0+i+1}$). By assumption, $\tilde{C}(v_i, v_{i+1})$ is not contained in a component of order at least t of $G - V(C')$. Since, moreover, $|H_0 - V(C')| < t$, it follows that C' is a D_{i+1}-cycle of G with $\omega_i(G - V(C')) < \omega_i(G - V(C))$, contradicting the choice of C.

Thus we have shown that, for $1 \leq i \leq k$, a subgraph H_i satisfying the requirements (i), (ii) and (iii) indeed exists, provided $t \leq 2$ in case $k = 1$. Following an analogous reasoning one proves that H_0 and H_i are disjoint and, a fortiori, remote.

Next we prove by contradiction that, for $1 \leq i < j \leq k$, the subgraphs H_i and H_j are remote. Assume that H_i and H_j are close or non-disjoint. Then a $u_{i2} u_{i2}'$-path P' can be found such that

(1) $P' \cap C = \tilde{C}[u_{i2}, w_i] \cup \tilde{C}[w_i, u_{i2}]$, where w_i and w_j are vertices of $\tilde{C}[u_{i2}, u_{i1}]$ and $\tilde{C}[u_{i1}, u_{i2}]$, respectively,

(2) no vertex of $V(P') - V(C)$ is in H_0,

(3) the sum of the lengths of $\tilde{C}[u_{i2}, w_i]$ and $\tilde{C}[w_i, u_{i2}]$ is maximum, i.e. no $u_{i2} u_{i2}'$-path satisfying (1) and (2) has more vertices with C in common than P'.

Now consider the cycle

$$C'' = v_i u_{0i} \bar{P}[u_{0i}, u_{0i}] u_{0i} v_i \tilde{C}[v_i, u_{i2}] \bar{P}[u_{i2}, u_{i2}] \tilde{C}[u_{i2}, v_i],$$

where \bar{P} is a $u_{0i} u_{0i}'$-path in H_0. In Fig. 1 the cycle C'' is indicated by arrows.

Denote by L_i and L_j the components of $G - V(C'')$ containing the vertices (if any) of $\tilde{C}[u_{i1}, w_i]$ and $\tilde{C}[u_{j1}, w_j]$, respectively. If L_i and L_j would coincide, then a $u_{i2} u_{i2}'$-path satisfying (1) and (2) could be indicated having more vertices with C in common than P', a contradiction with the choice of P'. Thus L_i and L_j are distinct. Moreover, by the way H_i and H_j were chosen, both L_i and L_j have order less than t (otherwise (iii) would be violated). But then C'' is a D_{i+1}-cycle with $\omega_i(G - V(C'')) < \omega_i(G - V(C))$, contradicting the choice of C.
Thus we have shown that the connected subgraphs H_0, H_1, \ldots, H_k of G of order t are mutually remote, so that $\alpha_i > k$. Since α_x is easily seen to be a nonincreasing function of x, it follows that $\alpha_k \geq \alpha_i > k$. □

For $s > \lambda$, the graph $K_k \vee (k+1)K_s$ is non-D_λ-cyclic and satisfies $\alpha_k = k+1$, showing that Theorem 2 is, in a sense, best possible.

Theorem 2 can be improved to a generalization of Theorem D. Referring to the proof of Theorem 2, it can be shown that

$$d(H_i) + d(H_j) \leq v + k - \lambda - k\lambda \quad (0 \leq i < j \leq k).$$

Bondy [2] showed these inequalities to hold in case $\lambda = 1$. The proof of the general case is completely analogous and hence omitted. Summing the above inequalities eventually yields

Theorem 3. Let k and λ be positive integers such that either $k \geq 2$ or $k = 1$ and $\lambda \leq 2$. If G is a k-connected graph, other than a tree, such that, for every $k + 1$ mutually remote connected subgraphs H_0, H_1, \ldots, H_k of order λ of G,

$$\sum_{i=0}^{k} d(H_i) > \frac{1}{2}(k+1)(v + k - \lambda - k\lambda),$$

then G is D_λ-cyclic.
From Theorem 3 one easily deduces a generalization of Theorem B: a \(k \)-connected graph with \(\delta \lambda > \frac{1}{2}(v + k - \lambda - k \lambda) \) is \(D_\lambda \)-cyclic (\(k \geq 2 \) or \(k = 1 \) and \(\lambda \leq 2 \)). However, we can do better.

Theorem 4. Let \(k \) and \(\lambda \) be positive integers such that either \(k \geq 2 \) or \(k = 1 \) and \(\lambda \leq 2 \). If \(G \) is a \(k \)-connected graph, other than a tree, with

\[
\delta \lambda > \begin{cases}
(v - (k + 1)\lambda + k^2)/(k + 1) & \text{if } \lambda \geq k, \\
(v - \lambda)/(\lambda + 1) & \text{if } \lambda < k,
\end{cases}
\]

then \(G \) is \(D_\lambda \)-cyclic.

Proof. By contraposition. Assume that \(G \) is \(k \)-connected and non-\(D_\lambda \)-cyclic. Set \(t + 1 = \min\{i \mid G \text{ is } D_{i+1}\text{-cyclic}\} \), so that \(t \geq \lambda \). Let \(C \) be a \(D_{t+1} \)-cycle of \(G \) for which \(\omega_\lambda(G - V(C)) \) is minimum. We may assume \(C \) to have length at least \(k \). Let \(H_0 \) be a component of \(G - V(C) \) of order \(t \) and let \(v_1, \ldots, v_m \) be the vertices of \(C \) close to \(H_0 \), where \(m = d(H_0) \). Choose to each \(v_i \) a subgraph \(H_i \) of \(G \) of order \(t \) as in the proof of Theorem 2 \((i = 1, \ldots, m)\). The choice of \(C \) then implies, among other things, that the vertex sets \(V(H_0), V(H_1), \ldots, V(H_m) \) and \(\{v_1, \ldots, v_m\} \) are mutually disjoint. Thus

\[
v \geq (d(H_0) + 1)t + d(H_0),
\]

or, equivalently,

\[
d(H_0) \leq (v - t)/(t + 1)
\]

and consequently

\[
\delta \lambda \leq (v - t)/(t + 1) + t - \lambda.
\] \hspace{1cm} (2)

Since \(G \) is \(k \)-connected, \(H_0 \) has degree at least \(k \), so (1) implies that

\[
v \geq (k + 1)t + k.
\] \hspace{1cm} (3)

If \(\lambda \geq k \), then also \(t \geq k \). The inequality (3) is then equivalent to

\[
\frac{v - t}{t + 1} + t - \lambda \leq \frac{v - (k + 1)\lambda + k^2}{k + 1}.
\] \hspace{1cm} (4)

Combination of (2) and (4) proves the first part of the theorem.

If \(\lambda \leq k \), then from (3) it follows that

\[
v \geq (\lambda + 1)t + \lambda.
\] \hspace{1cm} (5)

Since \(t \geq \lambda \), the inequality (5) is satisfied if and only if

\[
\frac{v - t}{t + 1} + t - \lambda \leq \frac{v - \lambda}{\lambda + 1}.
\] \hspace{1cm} (6)

The proof is now completed by combining (2) and (6). \(\square \)
For $\lambda \geq k$, the collection $\{K^*(v+1)K^\lambda \mid \lambda \geq \lambda\}$ consists of infinitely many k-connected non-D_λ-cyclic graphs with $\delta_\lambda = (v-(k+1)\lambda + k^2)/(k+1)$. If $\lambda \leq k$, then $\{K^*(v+1)K^\lambda \mid \lambda \leq \lambda\}$ is an infinite collection of k-connected non-D_λ-cyclic graphs with $\delta_\lambda = (v-\lambda)/((\lambda+1)$. Thus Theorem 4 is, in a sense, best possible.

In view of Theorem 4, Theorem 3 might be improved to

Conjecture 1. Let k and λ be positive integers satisfying either $k \geq 2$ or $k = 1$ and $\lambda \leq 2$. If G is a k-connected graph, other than a tree, such that, for every $k+1$ mutually remote connected subgraphs H_0, H_1, \ldots, H_k of order λ of G,

$$\sum_{i=0}^{k} d(H_i) \geq \begin{cases} v-(k+1)\lambda + k^2 & \text{if } \lambda \geq k \\ (k+1)(v-\lambda)/((\lambda+1) & \text{if } \lambda \leq k, \end{cases}$$

then G is D_λ-cyclic.

If H is a subgraph of order k of a graph G and v is a vertex of H, then $d(H) \geq d(v) - k + 1$. From this observation one easily deduces that the truth of Conjecture 1 (for $\lambda = k$) would imply the truth of the following, which is a weaker version of a conjecture due to Bondy.

Conjecture A (cf. [2, Conjecture 1]). Let G be a k-connected graph such that the degree-sum of every $k+1$ independent vertices is at least $v+k(k-1)$, where $v \geq 3$. Then there exists a cycle C of G such that $G-V(C)$ contains no path of length $k-1$.

In fact, Bondy conjectured that, under the condition of Conjecture A, every longest cycle C of G has the property that $G-V(C)$ contains no path of length $k-1$.

So far, the truth of Conjecture 1 has been established in the following cases:

(a) $\lambda = 1$ and $k \geq 1$ (Theorem D),
(b) $\lambda = 2$ and $k = 1$ [6, Theorem 2],
(c) $\lambda = 2$ and $k = 2$ [6, Corollary 3.2].

Without giving it we mention that the proof of [6, Corollary 3.2] is easily extended to a proof of Conjecture 1 for $k = 2$ and $\lambda > 2$.

Theorem 5. Let G be a 2-connected graph such that the degree-sum of every three mutually remote connected subgraphs of order $\lambda \geq 2$ is at least $v-3\lambda + 5$. Then G is D_λ-cyclic.

By Theorem 4, a 2-connected graph G has a D_λ-cycle ($\lambda \geq 2$) if $\delta_\lambda \geq 3/(v-3\lambda + 5)$. Under the assumption that $G \notin \mathcal{X}_\lambda$ the existence of a D_λ-cycle can be proved if the weaker inequality $\delta_\lambda \geq 3/(v-3\lambda + 3)$ is satisfied (the proof is a
slight extension of the proof of Theorem 4; instead of inequality (1) one demonstrates the inequality \(\nu \geq (m + 1)t + m + 2 \), where \(m = d(H_0) \), using the fact that deletion of the \(m \) vertices of \(C \) close to \(H_0 \) does not create a graph with more than \(m \) components of order at least \(t \). Thus, in particular, every 2-connected graph \(G \) satisfying \(G \not\subseteq \mathcal{K}_2 \) and \(\delta \geq \frac{1}{2} \nu - 1 \) is \(D_2 \)-cyclic, providing an extension of the following consequence of a result of Bigalke and Jung [1, Satz 1]: a graph \(G \) with \(G \not\subseteq \mathcal{K}_1 \) and \(\delta \geq \frac{1}{2} \nu \) has a \(D_2 \)-cycle. The latter result, in turn, easily implies the following, due to Nash-Williams [5, Lemma 4]: if \(G \) is a 2-connected graph and \(\delta \geq \max(\alpha, \frac{1}{3}(\nu + 2)) \), then \(G \) is hamiltonian.

References