SYNTHESIS OF 1-HYDROXYAZETIDINES AND THEIR CONVERSION
INTO 1,4-DIACETOXY-2-AZETIDINONES

M.L.M. Pennings, D. Kuiper and D.N. Reinoudt

(Laboratory of Organic Chemistry,
Twente University of Technology, Enschede, The Netherlands)

Abstract: 1-Hydroxyazetidines (5), prepared by reductive cyclization of O-benzyl-β-
tosyloxy oximes 1 and subsequent debenzylation, can be oxidized selectively either
to four-membered cyclic nitrones (6 and 7) or to 1,4-diacetoxy-2-azetidinones (8).

Recently we have reported a novel route to N-acetoxy β-lactams by oxidation of
the corresponding four-membered cyclic nitrones (2,3-dihydroazete l-oxides). We
have also found that 1-hydroxyazetidines obtained by reduction of the corresponding
four-membered cyclic nitrones, could be oxidized with HgO to the same nitrones in
almost quantitative yields. Furthermore, the C-4 unsubstituted 1-hydroxyazetidine
could be converted directly to the 1-acetoxy-2-azetidinone without isolating the
intermediate nitrone by reaction with two equivalents of lead tetraacetate.

Since the synthesis of four-membered cyclic nitrones is virtually limited to the
reaction of nitroalkenes with ynamines, an alternative and more general route to
these heterocycles seemed to be the oxidation of the corresponding 1-hydroxyazeti-
dines. We wish to report here the preliminary results of a study on the synthesis
and the oxidation of 1-hydroxyazetidines.

We anticipated that 1-hydroxyazetidines might be synthesized by cyclization of
γ-tosyloxy hydroxylamine derivatives, prepared by reduction of the corresponding
oximes. Oximation of 3,3-dimethyl-4-tosyloxy-2-butanone gave the corresponding
oxime la in a yield of 92% (m.p. 119.5-121.5°C, from diisopropyl ether). Reduction
of this oxime under relatively mild conditions (NaCNBH3/CH3COOH, 16 h at room tem-
perature) afforded 3,4,4-trimethylisoxazolidine 3 in a yield of 61% (b.p. 62-64°C/
13 mm Hg, nD 1.4444). MS: M+ 115.10 (C6H13NO). 1H NMR (CDCl3) 0.97 and 1.11 (s,
6H,CH3), 1.03 (d,3H,CH3), 3.02 (q,1H,H-3), 3.58 and 3.70 (AB,2H,J=7.3 Hz,H-5), 4.6
(bs,1H,NH). 3.HCl: dec. > 120°C, from chloroform/ethyl acetate. Obviously the re-
duction of the oxime is followed by a surprizing facile cyclization of the hydrox-
ylamine derivative 2a via intramolecular alkylation of the hydroxylamine moiety at
oxygen.

Therefore we prepared the O-benzyl oxime 1b from O-benzylhydroxylamine and 3,3-
dimethyl-4-tosyloxy-2-butanone, in a yield of 96% (m.p. 83-84.5°C, from diisopropyl
ether). Reduction of 1b with NaCNBH3 in acetic acid (16 h, 35°C) gave the 1-ben-
zyloxy-2,3,3-trimethylazetidine 4a in a yield of 63% (b.p. 62-64°C/0.5 mm Hg; n_D^{20} 1.4909). MS: $M^+ 205.15$ (C$_{13}$H$_{19}$NO). 1H NMR δ(CDCl$_3$) 3.27 (q,1H,H-2), 3.02 and 3.35 (AB,2H,$J=7$ Hz,H-4). 13C NMR δ(CDCl$_3$) 30.4 (s,C-3), 68.3 (t,C-4), 73.8 (d,C-2). Catalytic debenzylation of 4a with Pd/C in acetic acid afforded the 1-hydroxyazetidine 5a in a yield of 71% (b.p. 58-60°C/5 mm Hg, n_D^{20} 1.4363). MS: $M^+ 115.10$ (C$_6$H$_{13}$NO). 1H NMR δ(CDCl$_3$) 3.25 (q,1H,H-2), 3.06 and 3.37 (AB,2H,$J=7.3$ Hz,H-4), 6.9 (bs,1H,OH). 13C NMR δ(CDCl$_3$) 30.7 (s,C-3), 69.3 (t,NCH$_2$). Catalytic debenzylation of 4b afforded the 3,3-dimethyl-1-hydroxyazetidine (5b) in a yield of 61% (b.p. 56-58°C/5 mm Hg, n_D^{20} 1.4359). MS: $M^+ 101.08$ (C$_5$H$_{11}$NO). 1H NMR δ(CDCl$_3$) 1.19 (bs,6H,CH$_3$), 3.4 (AB,4H,NCH$_2$), 7.6 (bs,1H,OH). 13C NMR δ(CDCl$_3$) 28.1 (s,C-3), 71.3 (t,NCH$_2$).

Oxidation of 1-hydroxyazetidine 5a with yellow mercury(II)oxide in dichloromethane gave an oil, which according to 1H NMR spectroscopy contained $\approx 30\%$ of the nitron 6a. The absorptions in the 1H NMR spectrum at δ 1.32 (s), δ 1.93 (t,$J=1.95$ Hz, and δ 3.96 (q,$J=1.95$ Hz) are in good agreement with those reported previously by Black et al.7. Obviously this method of oxidation is to drastic, since nitrone 6a was strongly contaminated ($\approx 70\%$) with products that arise from decomposition or polymerization. Oxidation of 5a with "active lead(IV)oxide"14, which has been used for the preparation of sensitive and unstable nitrones from the corresponding hydroxylamines, gave a mixture of two isomeric four-membered cyclic nitrones in quan-
titative yield. According to 1H NMR spectroscopy in addition to $6a$ (78%) a second nitrone ($6b$) was formed (22%) by a different mode of hydrogen abstraction. 1H NMR δ (CDCl$_3$) 1.23 and 1.36 (s,6H,CH$_3$), 1.41 (d,3H,CH$_3$), 4.14 (q,1H,H-21), 6.74 (s,1H, N=CH).

Oxidation of 1-hydroxyazetidine $5b$, in which there is only one possible way of hydrogen abstraction gave the four-membered cyclic nitrone 7 as an oil in a yield of $\approx 70\%$. 1H NMR δ(CDCl$_3$) 1.39 (s,6H,CH$_3$), 4.04 (s,2H,H-2), 6.86 (s,1H,N=CH). Reaction of this crude oxidation product with dimethyl acetylenedicarboxylate (DMAD) quantitatively gave the cycloadduct 8 (oil, purified by filtration of an ethyl acetate solution through florisil). The structure of 8 was proven by comparison of the 1H and 13C NMR spectroscopic data with those of similar cycloadducts of four-membered cyclic nitrones with DMAD15. MS: M^+ 241.09 ($C_{11}H_{15}NO_5$). 1H NMR δ(CDCl$_3$) 1.14 and 1.45 (s,6H,CH$_3$), 3.62 and 3.79 (dAB,2H,$J_1=10$ Hz,$J_2=1$ Hz,H-7), 3.75 and 3.91 (s, 6H,0CH$_3$), 4.82 (t,1H,$J_1=1$ Hz,H-5).

Oxidation of 1-hydroxyazetidine $5a$ with three equivalents of lead tetraacetate in toluene at 0°C, produces the 1,4-diacetoxy-2-azetidinone 9 in a yield of 71% (m.p. 68.5-70°C, from petroleum ether 60-80°C9. MS: M^+ +1 230.10 ($C_{10}H_{16}NO_5$); IR(KBr) 1810 (NOCOCH$_3$), 1785 (C=O) and 1745 cm$^{-1}$ (OCOCH$_3$); 1H NMR δ(CDCl$_3$) 1.36 (s,6H,CH$_3$), 1.78 (s,3H,CH$_3$), 2.07 and 2.19 (s,6H,COCH$_3$). 13C NMR δ(CDCl$_3$) 55.0 (s,C-3), 97.2 (s,C-4), 169.0 (s), 168.3 (s) and 167.1 (s), (C=O and OC=O). It has been reported in the literature that oxidation of N,N-dibenzylhydroxylamine proceeds via the nitrone and also gives the corresponding diacetoxyl amide derivative16,17.

The above results show that 1-hydroxyazetidines can be synthesized by cyclization of γ-tosyloxy hydroxylamine derivatives, and that they can be oxidized in good yields to the corresponding nitrones with "active PbO$_2$". Oxidation with lead tetraacetate gives a 4-acetoxy-2-azetidinone derivative, a type of 2-azetidinone that is a precursor for biologically important bicyclic δ-lactam derivatives18.

Illustrations:

- A chemical reaction diagram showing the formation of $6a$ and $6b$ from $5a$.
- A chemical reaction diagram showing the formation of 7 from $5b$.
- A chemical reaction diagram showing the formation of 9 from $5a$.
Acknowledgement. This investigation was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for Advancement of Pure Research (ZWO).

References and Notes

6. This compound has been described in the literature, but spectral and physical data were not reported7.
9. Satisfactory elemental analyses were obtained for this compound (C,H,N ± 0.3%).
10. This compound was prepared by oxidation of 2,2-dimethyl-3-tosyloxypropanol with pyridinium chlorochromate: m.p. 67-69°C (dec.), from diisopropyl ether; m.p. Lit. 61.3°C.
13. The methyl singlet in the 1H NMR spectrum of 5b at δ 1.19 broadened upon cooling of the CDCl3 solution, and further cooling to about 0°C gave rise to two sharp singlets at δ 1.16 and δ 1.22. From the coalescence temperature (Tc = 28°C) and the chemical shift difference of the two singlets (Δν = 4.6 Hz) a AGf value of 16.3 kcalmol-1 for the nitrogen inversion process was calculated; a detailed study will be reported elsewhere.

(Received in UK 12 November 1982)