The explicit structure of the nonlinear Schrödinger prolongation algebra

by H.N. van Eck, P.K.H. Gragert and R. Martini

Department of Applied Mathematics, Twente University of Technology, P.O. Box 217, 7500 AE Enschede, the Netherlands

Communicated by Prof. P.J. Zandbergen at the meeting of January 31, 1983

ABSTRACT

The structure of the nonlinear Schrödinger prolongation algebra, introduced by Estabrook and Wahlquist, is explicitly determined. It is proved that this Lie algebra is isomorphic with the direct product $H \times (A_1 \otimes \mathbb{C}[t])$, where H is a three-dimensional commutative Lie algebra.

1. INTRODUCTION

In the second of their fundamental papers [1] Estabrook and Wahlquist introduced a prolongation structure for the nonlinear Schrödinger equation.

\begin{equation}
 i\psi_t + \psi_{xx} - \frac{i}{2} \varepsilon \psi \psi^2 = 0,
\end{equation}

where $\varepsilon = \pm 1$ and the bar denotes complex conjugate. This prolongation structure involves a Lie algebra generated by the eight letters $x_1, x_2, y_1, y_2, z_1, z_2, z_1, z_2$ subjected to the following commutator relations

\begin{equation}
 \begin{cases}
 [x_1, x_2] = [x_1, y_2] = [x_2, y_1] = [x_2, z_1] = [z_1, z_2] = [x_2, z_1] = [z_1, z_2] = 0, \\
 [x_1, z_1] = z_2, \quad [x_1, z_2] = z_2, \quad [z_1, z_1] = \frac{i}{2} y_1, \\
 \frac{i}{4} [x_2, z_2] + [y_1, z_1] - \varepsilon z_1 = 0, \quad [x_1, z_2] + 2[y_2, z_1] = 0, \\
 \frac{i}{4} [x_2, z_2] - [y_1, z_1] - \varepsilon z_1 = 0, \quad [x_1, z_1] - 2[y_2, z_1] = 0, \\
 [x_1, y_1] + [x_2, y_2] + 2[z_1, z_2] - 2[z_1, z_2] = 0.
 \end{cases}
\end{equation}
In the present note our aim is to establish the explicit form of this algebra in a way analogous to the analysis of the KdV-prolongation algebra described in [2].

With the help of the symbolic computation techniques developed in [3] the following table of commutators is derived from the relations (2).

Here \mathcal{J}_2 and \mathcal{J}_3 are defined by

$$
\mathcal{J}_2 = [z_1, z_2], \quad \mathcal{J}_3 = [z_1, z_3]
$$

and where we have used the notation xy instead of $[x, y]$.

For our convenience we shall use this notation henceforth. Table 1 may in principle be checked by hand using the Jacobi identity.

Table 1.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>y_1</th>
<th>y_2</th>
<th>z_1</th>
<th>z_2</th>
<th>z_3</th>
<th>z_4</th>
<th>z_5</th>
<th>\mathcal{J}_2</th>
<th>\mathcal{J}_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>z_2</td>
<td>z_3</td>
<td>z_4</td>
<td>z_5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
</tr>
<tr>
<td>y_1</td>
<td>0</td>
<td>ez_1</td>
<td>ez_2</td>
<td>ez_3</td>
<td>ez_4</td>
<td>$-ez_1$</td>
<td>$-ez_2$</td>
<td>$-ez_3$</td>
<td>$-ez_4$</td>
<td>0</td>
</tr>
<tr>
<td>y_2</td>
<td>$-\frac{z_3}{2}$</td>
<td>$-\frac{z_4}{2}$</td>
<td>$-\frac{1}{2} x_1 z_4$</td>
<td>$\frac{z_5}{2}$</td>
<td>$\frac{z_6}{2}$</td>
<td>$\frac{z_7}{2}$</td>
<td>$\frac{1}{2} x_1 z_5$</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>z_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{2} y_1$</td>
<td>\mathcal{J}_2</td>
<td>\mathcal{J}_3</td>
<td>$\frac{e}{2} z_2$</td>
<td>$-\frac{e}{2} z_3$</td>
<td>$\frac{e}{2} z_4$</td>
<td>$-\frac{e}{2} z_5$</td>
</tr>
<tr>
<td>z_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$-\mathcal{J}_2$</td>
<td>$-\mathcal{J}_3$</td>
<td>$-z_1 z_4$</td>
<td>$\frac{e}{2} z_3$</td>
<td>$-\frac{e}{2} z_4$</td>
<td>$-\frac{e}{2} z_5$</td>
<td></td>
</tr>
<tr>
<td>z_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\mathcal{J}_3</td>
<td>$z_1 z_4$</td>
<td>$z_1 z_5$</td>
<td>$\frac{e}{2} z_4$</td>
<td>$-\frac{e}{2} z_5$</td>
<td>$-\frac{e}{2} z_6$</td>
<td></td>
</tr>
<tr>
<td>z_4</td>
<td>$z_1 z_2$</td>
<td>$z_1 z_4$</td>
<td>$z_1 z_5$</td>
<td>$-e \mathcal{J}_2 z_3$</td>
<td>$-e \mathcal{J}_3 z_4$</td>
<td>$-e \mathcal{J}_4 z_5$</td>
<td>$-e \mathcal{J}_5 z_6$</td>
<td>$-e \mathcal{J}_6 z_7$</td>
<td>$-e \mathcal{J}_7 z_8$</td>
<td></td>
</tr>
<tr>
<td>z_5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$-\frac{e}{2} z_2$</td>
<td>$\frac{e}{2} z_3$</td>
<td>$-\frac{e}{2} z_4$</td>
<td>$\frac{e}{2} z_5$</td>
<td>$-\frac{e}{2} z_6$</td>
<td>$\frac{e}{2} z_7$</td>
<td></td>
</tr>
<tr>
<td>\mathcal{J}_2</td>
<td>\mathcal{J}_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

166
2. AN INHERENT GRADING OF THE NLS-PROLONGATION ALGEBRA

Analogous to the KdV case (see [2]) we shall show that the NLS-prolongation algebra described in the preceding section possesses an inherent grading. Let
\[\deg(x_1) = \delta_1, \ \deg(x_2) = \delta_2, \ \deg(y_1) = \delta_3, \ \deg(y_2) = \delta_4, \ \deg(z_1) = \delta_5, \ \deg(z_2) = \delta_6, \ \deg(z_3) = \delta_7 \text{ and } \deg(z_4) = \delta_8, \]
the degrees being elements of a commutative, additively written, group.

In order to make the relators (2) homogeneous the following relations between the degrees must hold:

\[
\begin{align*}
\delta_1 + \delta_2 &= \delta_6 \\
\delta_3 + \delta_4 &= \delta_3 \\
\delta_2 + \delta_6 &= \delta_3 + \delta_5 = \delta_5 \\
\delta_1 + \delta_6 &= \delta_4 + \delta_5 \\
\delta_1 + \delta_3 &= \delta_2 + \delta_4 = \delta_3 + \delta_8 = \delta_7 + \delta_6,
\end{align*}
\]

yielding \(\delta_3 = 0, \ \delta_2 = -\delta_3, \ \delta_2 = -\delta_1, \ \delta_4 = 2\delta_1, \ \delta_6 = \delta_1 + \delta_2\) and \(\delta_8 = \delta_1 - \delta_3\).

Obviously we may set \(\delta_1 = (1,0)\) and \(\delta_5 = (0,1)\) and in this way obtain a \(\mathbb{Z}^2\)-grading.

\[
\begin{align*}
\deg(x_1) &= (1,0) \\
\deg(x_2) &= (-1,0) \\
\deg(y_1) &= (0,0) \\
\deg(y_2) &= (2,0) \\
\deg(z_1) &= (0,1) \\
\deg(z_2) &= (1,1) \\
\deg(z_3) &= (0,-1) \\
\deg(z_4) &= (1,-1).
\end{align*}
\]

Now let \(A\) be an arbitrary semi-simple Lie algebra and \(C\) a Cartan subalgebra of dimension \(l\). It is known by Serre's theorem (see [4]) that \(A\) can be presented by the free algebra \(L(e_1, \ldots, e_n, f_1, \ldots, f_n, h_1, \ldots, h_l)\) and the relators

\[
\begin{align*}
e_i f_j &= \delta_{ij} h_i \\
h_i e_j &= \langle \alpha_i, \alpha_j \rangle e_j \\
h_i f_j &= -\langle \alpha_j, \alpha_i \rangle f_j \\
e_i^{a_i} e_j &= 0 \\
f_i^{a_i} f_j &= 0
\end{align*}
\]

where \(\langle \alpha_j, \alpha_i \rangle\) is the \(i-j\)-th element of the Cartan matrix.
A has a natural \mathbb{Z}'-grading. This can be seen as follows.

Let $\deg(e_i) = e_i, \deg(f_i) = \phi_i$ and $\deg(h_i) = \eta_i$, $1 \leq i \leq l$.

The relators become homogeneous if $\eta_i = (0, \ldots, 0)$, $\phi_i = (0, \ldots, 1, \ldots, 0)$, the canonical i-th basis element of \mathbb{Z}' and $\phi_i = -e_i$.

From this, in connection with the \mathbb{Z}^2-grading found for the NLS-algebra, we suspect that the latter contains a semi-simple algebra with a two-dimensional Cartan subalgebra.

Comparing the grades we find that z_1 plays the role of e_2, x_1 of e_1, x_2 of f_1, z_1 of f_2 and y_1 of an h.

However $x_1 x_2 = 0$, so h_1 must be zero whereas $z_1 z_1 = \frac{1}{2} y_1 = h_2 \neq 0$. This implies that the NLS-algebra contains only a semi-simple algebra with a one-dimensional Cartan subalgebra, i.e. a $\mathfrak{sl}(2)$.

3. PRESENTATION OF THE LIE ALGEBRA $A_1 \otimes \mathbb{C}[t]$

Let E be the Lie algebra presented by the free algebra $L(h, e, f_1, f)$ and the relations

$$\begin{align*}
he &= 2e, \quad hf = -2f, \quad ef = h, \\
\h f_1 &= -2f_1, \quad e^3f_1 + f_1^3 e = 0, \quad ff_1 = 0.
\end{align*}$$

Then we have the following theorem

THEOREM 1. The Lie algebra E is isomorphic with the Lie algebra $A_1 \otimes \mathbb{C}[t]$, the Lie algebra of polynomials in the indeterminant t with coefficients in the simple algebra $A_1 = \mathfrak{sl}(2)$.

PROOF. Let M be the subspace of E, generated by the words of the form

$$a_{i_1} (a_{i_2} \cdots (a_{i_n} a_1) \cdots)$$

with $1 \leq i_k \leq 2$ for $1 \leq k \leq n$ and $a_1 = e, a_2 = f_1$ with the exception of $a_1 = e$ itself.

We shall show that M is an ideal in E in 5 steps.

STEP 1. $eM \subset M, f_1 M \subset M$.

PROOF. This follows from the definition of M.

STEP 2. $hM \subset M$.

PROOF. $ha_1 = 2a_1$ and $ha_2 = -2a_2$ is a direct consequence of the relations (7). If $ha = \lambda a$ and $hb = \mu b$ with scalars λ and μ then according to Jacobi identity it follows that $h(ab) = (\lambda + \mu)ab$.

The result follows by induction

STEP 3. $e^3 f_1 = f_1^3 e = 0$.

168
PROOF. According to (7) we have

\[e^3f_1 + f_1^3e = 0 \]

and

\[h(e^3f_1 + f_1^3e) = 4e^3f_1 - 4f_1^3e = 0. \]

Consequently \(e^3f_1 = f_1^3e = 0 \).

STEP 4. \(fM \subseteq M \).

PROOF. \(fa_1 = -h \) and \(fa_2 = 0 \). The result follows from step 2 by induction. Observe that \(a_1 \notin M \).

STEP 5.

PROOF. By proposition 3 of ref. [2] with \(EW \) replaced by \(E \) we know that \(M \) is an ideal of \(E \).

Secondly we shall prove that \(E = A_1 \oplus M \) with \(A_1 \) spanned by \(e, f \) and \(h \).

Obviously we have \(E = A_1 + M \). Hence it suffices to show that \(A_1 \cap M = \{0\} \).

Now the relations (7) induce a natural \(\mathbb{Z} \)-grading on \(E \) with \(\deg(h) = 0 \), \(\deg(e) = \deg(f_1) = 1 \) and \(\deg(f) = -1 \).

With respect to this grading scalar multiples of \(f_1 \) are the only elements of \(M \) of degree 1. Remember that \(e \notin M \). All other homogeneous elements of \(M \) have degree \(\geq 2 \). So clearly we have \(A_1 \cap M = \{0\} \).

According to theorem 3 of ref. [2] we know that \(M^{2n} \), the elements of \(M \) of degree \(2n \), is spanned linearly by \(h_{2n} \) and \(M^{2n+1} \) by \(eh_{2n} \) and \(f_1h_{2n} \), \(n = 0, 1, 2, \ldots \).

Moreover we have

\[h_{2n+2} = \frac{1}{2} f_1(eh_{2n}) = \frac{1}{2} e(f_1h_{2n}). \]

Now writing \(e_{2n+1} = -2eh_{2n} \) and \(f_{2n+1} = 2f_1h_{2n} \) we have the following formulae

\[
\begin{aligned}
 h_{2m}e_{2n+1} &= 2e_{2m+n+1} \\
 h_{2m}h_{2n} &= 0 \\
 h_{2m}f_{2n-1} &= -2f_{2m+2n-1} \\
 e_{2n+1}f_{2m-1} &= h_{2m+2n} \\
 f_{2m-1}f_{2n-1} &= e_{2m+1}e_{2n+1} = 0 \\
 \text{with } f_{-1} &= f, h_0 = h \text{ and } e_1 = e,
\end{aligned}
\]

(8) corresponding to those of ref. [2].

Finally an isomorphism of \(E \) and \(A_1 \otimes \mathbb{C}[t] \) is given by

\[
\begin{aligned}
 f_{2n-1} &\mapsto f \otimes t^n \\
 h_{2n} &\mapsto h \otimes t^n \\
 e_{2n+1} &\mapsto e \otimes t^n
\end{aligned}
\]

(9)
4. THE STRUCTURE OF THE NLS-PROLONGATION ALGEBRA

If we set for $\varepsilon = 1$: $h = 2y_1$, $e = 2z_1$, $f = 2z_1$ and $f_1 = 2z_2$ then from table 1 it follows that the relations (7) are satisfied.

For $\varepsilon = -1$ to obtain the same result we may substitute:

$$h = -2y_1, \ e = 2iz_1, \ f = 2iz_1 \text{ and } f_1 = 2iz_2.$$

Consequently, the NLS prolongation algebra contains $A_1 \otimes \mathbb{C}[t]$ as a subalgebra. We shall show that the natural \mathbb{Z}-grading of $A_1 \otimes \mathbb{C}[t]$ is an homomorphic image of the \mathbb{Z}^2-grading of this subalgebra. In fact this homomorphism ϕ is defined by

$$\phi(a, b) = 2a + b.$$

Using the \mathbb{Z}^2-grading of the NLS-prolongation algebra we shall search for the “radical”.

Evidently, x_2 belongs to it. Now the role of x_1 and y_2 is not satisfactorily determined. The \mathbb{Z}-grading of x_1 equals 2 and the \mathbb{Z}-grading of y_2 equals 4.

Now the elements of $A_1 \otimes \mathbb{C}[t]$ with same degree are multiples of h_2 with degree 2 and h_4 with degree 4.

![Diagram](image-url)

Picture 1.
So we expect that \(x_1 + \lambda z_1 z_2 \) will belong to the "radical" for appropriate \(\lambda \). Indeed, if we commute this element with the basic letters \(x_1, x_2, \ldots, z_2 \) we find that for \(\lambda = 2\varepsilon \), this element commutes with these basic letters.

For \(y_2 + \mu z_1 z_3 \) the same holds for \(\mu = \varepsilon \).

Therefore we have proved the following result

THEOREM 2. The NLS-prolongation algebra is isomorphic with the direct product

\[
H \times (A_1 \otimes \mathbb{C}[t]),
\]

where \(H \) is a three-dimensional commutative Lie algebra.

5. **THE CASE** \(\text{deg}(z_1) = \text{deg}(\xi_1) \)

From the physical point of view it may be requisite that \(\text{deg}(z_1) = \text{deg}(\xi_1) \) and \(\text{deg}(z_2) = \text{deg}(\xi_2) \).

In this case from the relations (4) it follows that \(\delta_5 = \delta_7 = 0 \) and we find a \(\mathbb{Z} \)-grading immediately. Setting \(\delta_3 = 1 \), we have

\[
\begin{align*}
\text{deg}(x_1) &= 1, \quad \text{deg}(x_2) = -1, \quad \text{deg}(y_1) = 0, \quad \text{deg}(y_2) = 2, \\
\text{deg}(z_1) &= 0, \quad \text{deg}(z_2) = 1, \quad \text{deg}(\xi_1) = 0, \quad \text{deg}(\xi_2) = 1.
\end{align*}
\]

With respect to this grading theorem 1 remains in force, however, picture 1 reflecting the grading has to be modified and becomes

\[
\begin{array}{c}
\begin{array}{c}
A_1 \otimes \mathbb{C}[t] \\
H
\end{array}
\end{array}
\]

\[
\begin{align*}
&f_3 \quad \ldots \ldots \quad h_3 \quad \ldots \ldots \quad e_3 \\
&f_2 \quad \ldots \ldots \quad h_2 \quad \ldots \ldots \quad e_2 \quad y_2 + \varepsilon z_1 z_3 \\
&f_1 \quad \ldots \ldots \quad h_1 \quad \ldots \ldots \quad e_1 \quad x_1 + 2\varepsilon z_1 z_2 \\
&f \quad \ldots \ldots \quad h \quad \ldots \ldots \quad e \quad x_2 \\
&\text{degree} \
\end{align*}
\]

Picture 2.
REFERENCES