Trimethylene Carbonate and -Caprolactone Based (co)Polymer Networks: Mechanical Properties and Enzymatic Degradation


Bat, Erhan and Plantinga, Josée A. and Harmsen, Martin C. and Luyn, Marja J.A. van and Zhang, Zheng and Grijpma, Dirk W. and Feijen, Jan (2008) Trimethylene Carbonate and -Caprolactone Based (co)Polymer Networks: Mechanical Properties and Enzymatic Degradation. Biomacromolecules, 9 (11). pp. 3208-3215. ISSN 1525-7797

[img] PDF
Restricted to UT campus only
: Request a copy
Abstract:High molecular weight trimethylene carbonate (TMC) and -caprolactone (CL) (co)polymers were synthesized. Melt pressed (co)polymer films were cross-linked by gamma irradiation (25 kGy or 50 kGy) in vacuum, yielding gel fractions of up to 70%. The effects of copolymer composition and irradiation dose on the cytotoxicity, surface properties, degradation behavior, and mechanical and thermal properties of these (co)polymers and networks were investigated. Upon incubation with cell culture medium containing extracts of (co)polymers and networks, human foreskin fibroblasts remained viable. For all (co)polymers and networks, cell viabilities were determined to be higher than 94%. The formed networks were flexible, with elastic moduli ranging from 2.7 to 5.8 MPa. Moreover, these form-stable networks were creep resistant under dynamic conditions. The permanent deformation after 2 h relaxation was as low as 1% after elongating to 50% strain for 20 times. The in vitro enzymatic erosion behavior of these hydrophobic (co)polymers and networks was investigated using aqueous lipase solutions. The erosion rates in lipase solution could be tuned linearly from 0.8 to 45 mg/(cm2 × day) by varying the TMC to CL ratio and the irradiation dose. The copolymers and networks degraded essentially by a surface erosion mechanism.
Item Type:Article
Copyright:© 2008 American Chemical Society
Science and Technology (TNW)
Research Group:
Link to this item:
Official URL:
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page

Metis ID: 254015