is instructive, indeed, and serves its purpose, i.e. to “give managers and students of management, accounting and business generally, a practical insight into the ways in which OR actually works.” But, to the reviewer’s opinion, its particular value rests on its presentation of management applications of financial mathematics rather than of OR techniques. It is for this reason that practitioners and students may find the book particularly useful.

C.P. PAPPIS
National Bank of Greece
Athens, Greece

Herbert MOSKOWITZ and Gordon P. WRIGHT
Operations Research Techniques for Management
Prentice-Hall, Englewood Cliffs, NJ, 1979, xv + 793 pages, £12.95

The goal of the authors is to provide a general introduction to quantitative management decision making for a broad public with only an elementary knowledge of mathematics.

After a description of the development and characteristics of operations research and the introduction of some probability concepts and models, the next four chapters deal with decision theory. Single-stage decision theory, the concept of utility, sequential decision making and decision making with multiple objectives are introduced, mostly by means of numerical examples, which in general are well chosen and well described, and give a fair survey of the sort of business situations in which decision theory is applicable.

The second part of the book is dedicated to mathematical programming techniques. Firstly, linear programming is introduced. It is rather peculiar that the authors have chosen an essentially discrete optimization problem as the numerical example by which LP is introduced. Simplex method, duality, post-optimality analysis and LP under uncertainty are described in a way that is not different from that of most introductory textbooks. This also applies to the next chapter which deals with transportation models. Next, the branch-and-bound technique for discrete optimization models is described. Rather interesting is the chapter on goal programming, a subject which is absent in almost every introductory textbook.

Part three of the book is oriented towards the areas of inventory control in a deterministic and stochastic environment, forecasting, waiting lines, simulation and project management by network models. Compared with the contents of the earlier parts of the book, this last part seems to be written with much more humble aims and the last four subjects are described rather elementarily indeed. All chapters end with a small list of good references, a number of review questions (and their answers) and some well-chosen problems and case descriptions to be solved by the reader. A list of tables and a comprehensive subject index conclude the book. The lay-out of the book is good and clearly arranged.

In my opinion this book can be fruitfully used as a good textbook on quantitative decision making for business students at an undergraduate level. Due to the superficiality of the last part of the book it seems less suitable for a general introductory operations research course.

P. MELIS
Twente University of Technology
Enschede, Netherlands

Hans W. GOTTINGER
Elements of Statistical Analysis
De Gruyter, Berlin, 1980, 244 pages, DM60.00

What does the term ‘statistical analysis’ convey to you? To me, it suggests the arsenal of statistical techniques used for squeezing the last ounce of information from a recalcitrant data set. If you share my opinion, this book may disappoint you, because there is hardly a number in it, and the strongest theme is the interpretation of probability. But accepted for what it is, and not what it says it is, the book has something to offer. More of that later; first, though, back to what the author seems to think he has written: “This book has been designed as an introductory textbook on an elementary level with emphasis on application in the behavioral sciences… [it] requires only a limited background in high school algebra, except for the more technical, starred chapters”. Wrong again, I think! Much of even the unstarred material needs considerably more than high school algebra