Adaptation to Real Motion Reveals Direction-selective Interactions between Real and Implied Motion Processing


Lorteije, Jeannette A.M. and Kenemans, Leon and Jellema, Tjeerd and Lubbe, Rob H.J. van der and Lommers, Marjolein W. and Wezel, Richard J.A. van (2007) Adaptation to Real Motion Reveals Direction-selective Interactions between Real and Implied Motion Processing. Journal of Cognitive Neuroscience, 19 (8). pp. 1231-1240. ISSN 0898-929X

[img] PDF
Restricted to UT campus only
: Request a copy
Abstract:Viewing static pictures of running humans evokes neural activity in the dorsal motion-sensitive cortex. To establish whether this response arises from direction-selective neurons that are also involved in real motion processing, we measured the visually evoked potential to implied motion following adaptation to static or moving random dot patterns. The implied motion response was defined as the difference between evoked potentials to pictures with and without implied motion. Interaction between real and implied motion was found as a modulation of this difference response by the preceding motion adaptation. The amplitude of the implied motion response was significantly reduced after adaptation to motion in the same direction as the implied motion, compared to motion in the opposite direction. At 280 msec after stimulus onset, the average difference in amplitude reduction between opposite and same adapted direction was 0.5 AV on an average implied motion amplitude of 2.0 AV. These results indicate that the response to implied motion arises from direction-selective motion-sensitive neurons. This is consistent with interactions between real and implied motion processing at a neuronal level.
Item Type:Article
Copyright:© 2007 MIT
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Faculty of Behavioural, Management and Social sciences (BMS)
Research Group:
Link to this item:
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page

Metis ID: 242109