I. INTRODUCTION

The apparent success of the theory of oriented growth\(^1\)\footnote{Received May 17, 1974.} in explaining a variety of observed annealing textures has for some time diminished the interest in the older theories of oriented nucleation.\(^2\)\footnote{This work is part of the research programme of the research group FOM-TNO of the "Stichting voor fundamenteel onderzoek der materie" (Foundation for fundamental research of matter-F.O.M.) and was made possible by financial support from the "Nederlandse organisatie voor zuiver wetenschappelijk onderzoek" (Dutch organisation for pure research-Z.W.O.).} \(^3\) There is little doubt about the fact that the orientation relationship between recrystallisation texture and deformation texture is determined exclusively by the rules of growth selection if nuclei in all possible orientations are present.\(^4\)\footnote{\(\times\,\)}\footnote{\(\ddagger\,\)} It is however not conceivable that this condition is met in most of the deformation structures. A hard nut to crack for the theory of oriented growth has always been the cube texture in f.c.c. metals and alloys with a relatively high stacking fault energy, such as Al, Ni, Cu, Au and \(\alpha\)Fe–Ni. More recent observations by Horiuchi et al.\(^5\) Hinkel et al.\(^6\) and Ray et al.\(^7\) seem to confirm the old theory of oriented nucleation proposed by Burgers and Verbraak\(^8\)\footnote{Mechanical Department, Materials Section, Technical University Twente Enschede, The Netherlands.} which explains the cube texture by an inverse Rowland transformation of the main components of the deformation texture. With respect to f.c.c. metals and alloys with a low stacking fault energy such as Ag and \(\alpha\)-brass the theory of oriented growth seemed to provide a reasonable explanation of the observed annealing textures. The experimental fact, however, that in some cases only a part of the orientations predicted by the theory of oriented growth are actually formed, may be an indication that even in these metals oriented nucleation cannot be altogether neglected. Besides this, even if all orientations were present usually the clockwise rotation is about a different angle from the anti-clockwise rotation.\(^9\)\footnote{\(\times\,\)}\footnote{\(\ddagger\,\)} Recently Peters and Reid\(^10\) concluded from their experiments on bronze and austenitic steel that the formation of recrystallisation textures in f.c.c. metals with a low stacking fault energy is governed by twinning. Their results are in agreement with those of Gindraux and Form.\(^11\) In the present paper, new results on Ag and Ni-Co alloys will be presented. These results confirm the important role played by twinning in the formation of annealing textures of f.c.c. metals with a low stacking fault energy. Quite unexpectedly it was found, however, that also in these metals the inverse Rowland transformation apparently is responsible for the first recrystallised nuclei formed in the cold rolled matrix. These primary nuclei with a cube orientation and their twins limit the number of possible orientations as predicted by the theory of oriented growth.

II. EXPERIMENTS

The experiments were carried out mainly with polycrystalline Ag (99.999 per cent, obtained from Johnson...
and Matthey) and an Ag single crystal randomly oriented (obtained from Metals Research). From the single crystal, small specimens with an orientation (100)[011] were cut, with a M.R. sparking machine. Both the single crystal and the polycrystalline Ag were rolled, while being inserted in soft-annealed polycrystalline Cu. The rolling process was carried out on a Bühler rolling mill with a roll diameter 160 mm at 24 rev/min per min in steps of 1 per cent of the total deformation. The final deformation was always more than 99.5 per cent. After the rolling process, the specimens were stored in liquid nitrogen. For observations in the electron microscope, part of the specimens were polished electrochemically in a solution of 67.5 g KCN, 15 g K–Na tartrate, 15 g K₄Fe(CN)₆, 19.5 cm³ H₃PO₄ and 2.5 cm³ NH₃OH in 11 H₂O (after Bailey and Hirsch). The recrystallisation kinetics of the polycrystalline Ag were measured by means of resistivity measurements. From these recrystallisation data specific annealing treatments could be chosen for the study of the development of the recrystallisation texture. The texture determinations were carried out on a Philips texture goniometer with a pitch of 5°. The angle from the rolling plane (i.e. the plane of the stereographic projection) was restricted to 80°. Besides this, a number of specimens have been studied in the electron microscope (Philips E.M. 300).

III. RESULTS

(a) The as rolled specimens

Both in the rolled polycrystalline Ag as in the rolled Ag single crystal, the deformed material had a very sharp (011)[211] + (011)[211] texture. However, a large number of microtwins are observed as shown in Fig. 1. In the (011)[211] component most of the twins were formed on the (111) plane and in the (011)[211] component on the (111) plane. So, most of the twins were formed on the {111} plane perpendicular to the rolling plane and parallel to the rolling direction. Some twins, however, were observed on the (111) and (111) planes respectively, which results in the orientations (011)[211] and (011)[211] (compare Fig. 11).

None of these twins are oriented favorably for deformation (the resolved shear stress for twinning on these planes is zero). Because of this, these twins have to be attributed to recrystallisation during rolling. This is also confirmed by the fact that they are nucleated at the grain boundaries, and have very sharp and straight boundaries. From these observations it may be concluded that during the rolling process, twinning occurs due to recrystallisation.

(b) Recrystallisation kinetics

For the study of the development of recrystallisation textures, it is necessary to know the degree of recrystallisation as a function of both time and temperature. These functions are given in the curves of Fig. 2. From these curves, a number of heat treatments were chosen to be examined by X-ray diffraction and the electron microscope. These specimens are indicated in Fig. 2.

(c) Texture development

1. Measurements with the texture goniometer. The specimens, heat treated at 100°C and 140°C have been studied most extensively. From these texture measurements it may be concluded that the texture development due to recrystallisation is as follows:

The first change of the texture due to recrystallisation is the development of a texture component which
can be described as \(\{852\}\{452\}\) of which the permutations \((258)[452], (285)[425], (258)[452]\) and \((285)[425]\) are observed. Also a considerably weaker \(\{310\}\{001\}\) texture component has developed (permutations \((013)[100] + [031][100]\)). This is shown in Fig. 3 for a specimen heat treated 18 sec at 140°C. At this stage of recrystallisation, however, the strongest texture component is still the deformation twin texture \((011)[211] + (011)[211]\). Furthermore in this stage another new component has developed which can be described as \(\{841\}[474]\). (Permutations which are present \((148)[474], (184)[447]\); \((148)[474]\) and \((184)[447]\).) After an anneal of 30 sec at 140°C (Fig. 4a,b), by far the strongest texture component is the \(\{852\}\{452\}\) texture. By now, the deformation texture seems to have vanished and the \(\{031\}\{100\}\) and \(\{841\}\{474\}\) components have increased in strength. This tendency is observed throughout the recrystallisation process, but further pole figures have been omitted for the cause of brevity.

Although it is not easy to distinguish between the maxima of the various texture components, a plot of the highest maximum of a certain texture component, as a percentage of the sum of all the highest maxima gives a fairly good impression of the texture development due to recrystallisation (Fig. 5). This method was proposed by F. Haessner\(^{26}\) for the Cu to Ag type rolling texture development in a series of Ni-Co alloys. Although this method is used here for a much more complicated case, it seems to provide fair results.

2. Observations with the electron microscope. The beginning of recrystallisation was observed after...
heat-treatments of 10 sec at 140°C, 30 and 60 sec at 120°C and 180 sec at 100°C. From these observations it may be concluded that the recrystallisation process starts with an in situ recrystallisation. After a rearrangement of the dislocations in a more or less ordered structure (Fig. 6—10 sec 140°C) isolated fully recrystallised nuclei are observed. In every case recrystallisation twinning was observed (compare Fig. 9—35 sec 140°C). Shortly after this, isolated grains with a different orientation are appearing in the still heavily deformed parts of the matrix (Fig. 7—180 sec at 100°C). The orientation of the recrystallised grain A and its immediate surrounding can be seen from the diffraction patterns in Fig. 8. The orientation of A turns out to be $<100>|001|$ while the surrounding matrix has the $(011)<211> + (011)<121>$ twin orientation. These orientations are frequently observed near the first recrystallised grains. Unfortunately it is not possible to obtain a good bright field image of the boundaries between these texture components. This is due to the fact that the viewing plane...
was the rolling plane, which is "clouded" by the numerous dislocations. It would be advantageous to study a plane which is perpendicular to the transversal direction. In those specimens which are completely or almost completely recrystallised it is noticed once again that the majority of the grains have a twin structure. The orientations which are observed are those mentioned in the previous part as they are measured with the texture goniometer. (Fig. 9—35 sec at 140°C). There is some spread around these orientations, but the number of electron microscopical orientations is insufficient for analytical treatment. The results obtained thus far are summarised schematically in Fig. 10.
IV. DISCUSSION

Any theory explaining the texture development due to recrystallisation should explain the observations shown in Fig. 10. The first question is whether the theory of oriented growth can explain this texture development. The type of texture predicted by this theory can be related to the deformation textures which is a (011)[010] + (011)[011] texture, by a rotation of 38° around the plane normals of the active slip planes (111) and (111) (see Fig. 11). A clock wise rotation of the rolling plane normal around (111) will produce a new plane parallel to the rolling plane with an orientation of approximately (1, 5, 11) (A). A counter clock-wise rotation produces a similar (I, 11, 5) (B) orientation. The great circles of these orientations on which the rotated rolling directions have to be situated are marked A and B in Fig. 11. A clock-wise rotation of the rolling direction [211](2) produces a new direction very close to [121](2A, angular distance 4°). A counter clock-wise rotation of the alternative rolling direction (1): [211] produces a similar [112] direction (1B). In this way the rotational relationship produces a (1I, 5, 11)[121] + (1, 11, 5)[112] texture from (011)[211] + (011)[211]. These “rotation textures” could explain the four {841}(447) texture components, but not the other components which are observed.

For the (031)[100] + (013)[100] components, the rolling plane normal (013) could be explained, because it is only 7°38' from (1, 5, 11) but the rotation of 38° of [211](1) clockwise and [211] counter clock-wise do not produce the [100] rolling direction. The {852}(452) components can neither be explained in this way.

An interesting question is whether the cube nuclei that were observed may play a role in the texture development. The mechanism for cube texture formation, as it is proposed by Burgers and Verbraak, is from crystallographic point of view able to produce the cube texture from as well the {112}(111) as from the {110}(112) twin textures. (Fig. 12). These authors proposed that the energy for this inverse Rowland mechanism came from the incoherent boundary in the {112}(111) twin. This source of energy is not available in a {110}(112) twin texture, so an inverse Rowland transformation would not be possible in this texture. Nevertheless Horincho
cubic texture." In a \{112\} \{111\} matrix this is the \{210\} \{001\} orientation and in a \{110\} \{112\} texture this is the \{210\} \{120\} orientation. The \{210\} \{120\} orientation is never observed to grow into a \{110\} \{112\} oriented structure, nor is its twin \{210\} \{452\} (also produced by the inverse Rowland transformation); although these orientations could be responsible for the observed spread in the Ag recrystallisation texture. The twin of \{210\} \{245\} (the secondary twin of \{210\} \{120\}) has the orientation \{852\} \{452\} which fits the observed texture rather well (Figs. 3, 4), although its rotational relationship is only 25°. The ternary twin of the tilted cube texture in \{110\} \{112\} has an orientation of almost \{310\} \{001\} which has a rotational relationship of 35° opposite to the secondary twin. Thus, the asymmetrical rotation, mentioned before, which was observed is explained as well. The mechanism proposed here, thus, explains all the observed orientations as well as their twin relationship. It is very interesting to notice that the recrystallisation texture of heavily rolled Ni44Co is composed of \{100\} \{001\} + \{122\} \{221\} (Fig. 13). From this observation it may be concluded that the mechanism which is proposed above holds for all f.c.c. metals, regardless of their S.F.E. The change

eq \text{et al.}\) and Hinkel et al.\) observed cube grains in Cu in a \{110\} \{112\} oriented matrix. The cube texture will, however, not be able to grow into the \{110\} \{112\} texture due to the unfavorable rotational relationship. According to Verbraak,\) the inverse Rowland transformation does not only produce the \{100\} \{001\} texture, but also its twin \{221\} \{112\} which is supposed to provide an extra accommodation between the cube nucleus and the surrounding matrix. It is known from the investigations of Gindraux and Form,\) from Peters and Reid\) and from the results presented here, that primary recrystallisation is characterised by twinning. These observations are also supported by the growth accident theory for twin formation by Gleiter\) which makes continual twinning inevitable during primary recrystallisation. The attention is now drawn at the fact that the twin of the \{122\} \{221\} texture (the secondary twin of the cube texture) has the orientation \{441\} \{474\} which has a 34° rotational relationship with respect to the deformation texture and which is actually observed upon recrystallisation. Theoretically besides the \{100\} \{001\} + \{122\} \{221\} textures, the inverse Rowland transformation also has to produce the so called "tilted
in S.F.E. makes the deformation texture change. When the S.F.E. is lowered, the amount of Ag type
texture increases gradually as F. Haessner showed
for a series of Ni–Co alloys (S.F.E. decreases with
an increase of Co-content). It is observed that in
the recrystallisation textures of Ni–Co alloys the
{841}/(474) component increases with the Co-content.
This is expected because this type of texture is orien-
ted more favorably for growth in the {110}/(112)
matrix than the cube texture and its twins. Fur-
thermore it is observed that the {210}/(001) texture which
is produced by the inverse Rowland transformation
itself in a {112}/(111) matrix (the tilted cube texture)
rotates gradually to {310}/(001) which is very near to
the ternary twin in the tilted cube texture in the
{110}/(112) matrix. It is also striking to notice that
the (221)/(122) texture is eliminated as soon as the
{841}/(474) texture is produced. (Compare the pole
figures of recrystallised Ni44Co and Ni50Co Figs.
13, 14.) An important question, however, still remains
to be solved: where does the energy for the inverse
Rowland mechanism in the {110}/(112) matrix come from? A possible explanation could be based on the
micro-twins observed in the rolled Ag specimens. A
considerable part of the energy in these twins is rep-
resented by the incoherent tip of kink energy. This may
be a driving force for the annihilation of the twins by
the inverse Rowland transformation. This might ex-
plain too why Verbraak did not observe cube texture
formation in Ag single crystals, which were observed
to have a rather coarse twinned structure after de-
formation (14). In this coarse structure the balance
between the coherent boundary energy and the inco-
herent kink energy dips to the first side.

V. CONCLUSIONS

From the present results and a number of theoreti-
cal considerations the following process for recrystal-
lisation texture formation is proposed

(1) During the rolling process (in very pure metals)
or shortly thereafter in the first stadium of recrystal-
lisation (less pure metals) micro-recrystallisation tw-
sins are created.

(2) The coarse twins will grow on further annealling
and are retained after completion of the recrystallisa-
tion process.

(3) The small twins are annihilated by an inverse
Rowland transformation which causes the following
texture transitions:

\[(a) \{112\}/(111) \text{(twin)} \rightarrow \{100\}/(001) + \{122\}/(221)
 + \{210\}/(001) + \text{twins}\]

\[(b) \{110\}/(112) \text{(twin)} \rightarrow \{100\}/(001) + \{122\}/(221)
 + \{210\}/(120) + \text{twins}\].

(4) In case 3(a) all components except the twins of
the tilted cube texture are able to grow, so they will
make up the recrystallisation texture.

(5) In case 3(b) due to growth accidents the follow-

ing twinning occurs:

\[\{221\}/(122) \rightarrow \{841\}/(474)\]
\[\{210\}/(245) \text{(twin of the tilted cube texture)} \rightarrow \{852\}/(246) \rightarrow \{310\}/(001)\].

These twins will grow and they will thus produce the
recrystallisation texture.

ACKNOWLEDGEMENTS

The author wishes to express his deep appreciations
to Prof. Dr. Ir. C. A. Verbraak, the originator of this
work, for his encouragement and advice. Further
grateful thanks are due to Mr. A. M. Nijssen for many
helpful discussions in the course of the investigation
and to Mr. S. Hoeckstra and Mr. H. Groefsema for
their experimental aid.

REFERENCES

1. P. A. Beck and H. Hu, in Recrystallisation, Grain growth
 and Textures, papers presented at a seminar of the A.S.M.
4. W. G. Burgers and P. C. Louwerse, Z. Phys. 61, 605
 (1931).
 v. Wet. 58, 1525 (1950).
6. W. G. Burgers, Recr. and Grain Growth in Solid Metals,
 IXth Solvay Annual Conf. (1951).
7. M. N. Parthasarati and P. A. Beck, Trans. AIME 212,
 875 (1958).
8. B. Liebmann, K. Lücke and G. Masing, Z. Metallk., 47,
 57 (1956).
10. H. Hinkel, G. Haase and F. Granzer, Acta Met. 15,
 1875 (1967).
11. R. K. Bay, W. D. Hutchinson, F. M. C. Beag and
 (1957).
15. M. L. Kronberg and F. M. Wilson, Trans. AIME 155,
 605 (1949).
 (1973).