Counterexample Generation in Probabilistic Model Checking

Share/Save/Bookmark

Han, T. and Katoen, J.P. and Damman, B. (2009) Counterexample Generation in Probabilistic Model Checking. IEEE Transactions on Software Engineering, 35 (2). pp. 241-257. ISSN 0098-5589

open access
[img]
Preview
PDF
1MB
Abstract:Providing evidence for the refutation of a property is an essential, if not the most important, feature of model checking. This paper considers algorithms for counterexample generation for probabilistic CTL formulae in discrete-time Markov chains. Finding the strongest evidence (i.e., the most probable path) violating a (bounded) until-formula is shown to be reducible to a single-source (hop-constrained) shortest path problem. Counterexamples of smallest size that deviate most from the required probability bound can be obtained by applying (small amendments to) k-shortest (hop-constrained) paths algorithms. These results can be extended to Markov chains with rewards, to LTL model checking, and are useful for Markov decision processes. Experimental results show that typically the size of a counterexample is excessive. To obtain much more compact representations, we present a simple algorithm to generate (minimal) regular expressions that can act as counterexamples. The feasibility of our approach is illustrated by means of two communication protocols: leader election in an anonymous ring network and the Crowds protocol.
Item Type:Article
Copyright:© 2009 IEEE
Faculty:
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:http://purl.utwente.nl/publications/68146
Official URL:http://dx.doi.org/10.1109/TSE.2009.5
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page

Metis ID: 264046