Chlorine adds to activated cyano groups to give substituted N-chloroformimidoyl chlorides, as was reported by several authors.2,3,4 The enhanced reactivity of the cyano group in sulfonyl cyanides with nucleophilic reagents and in cycloaddition reactions was pointed out by van Leusen and Jagt.5,6

We now wish to report the readily occurring addition of chlorine to the cyanogen bond in sulfonyl cyanides to give substituted N-chloro sulfonyl formimidoyl chlorides:

\[R\text{-SO}_2\text{-CN} + \text{Cl}_2 \rightarrow R\text{-SO}_2\text{-C=N-Cl} \]

The reaction may be performed in a suitable solvent (e.g. CH\textsubscript{2}Cl\textsubscript{2}, CHCl\textsubscript{3}, CCl\textsubscript{4}) without a catalyst, at room temperature or above. Quantitative yields however were obtained when the sulfonyl cyanide was heated in a sealed tube with excess chlorine.

So when methane sulfonyl cyanide7 was heated with an excess chlorine for 15 h at 100-110\textdegree{C}, N-chloro methylsulfonyl formimidoyl chloride (I, R=CH\textsubscript{3}) was formed in quantitative yield.

(I) may be purified by distillation (b.p. 70-70.5\degree{C}/0.5 mm; m.p. 46-48\degree{C}). Correct elemental analysis was obtained. NMR (CCl\textsubscript{4}), (singlet at \(\tau = 6.73 \)) IR (C=N absorption at 1580 cm-1) and mass spectral data (m/e 175 (M+), 140 (CH\textsubscript{3}SO\textsubscript{2}CCl+), 96 (ClCNCI+), 79 (CH\textsubscript{3}SO\textsubscript{2}+), 61 (ClCN+) agree with the proposed structure.
Other examples are: II, $R = C_6H_5$, m.p. 46-48°, b.p. 124-125°/0.5 mm;
III, $R = p-CH_3C_6H_4$, m.p. 67-69°; IV, $R = p-ClC_6H_4$, m.p. 83-84°.

REFERENCES

1. This paper is considered to be part II of a series on the Addition of Chlorine to the Cyanogen Bond.
 Part I is: J. Geevers, J.Th. Hackmann and W.P. Trompen,

The sulfonyl cyanides used were obtained by a method very similar to that described by Cox and Ghosh, developed independently in our laboratory.