CHAPTER 4

SOME PROCEDURES FOR COMPUTERIZED ABILITY TESTING

WIM J. VAN DER LINDEN* and MICHEL A. ZWARTS†

*University of Twente, Enschede, The Netherlands
†National Institute of Educational Measurement, Arnhem, The Netherlands

Abstract

For computerized test systems to be operational, the use of item response theory is a prerequisite. As opposed to classical test theory, in item response models the abilities of the examinees and the properties of the items are parameterized separately. Hence, when measuring the abilities of examinees, the model implicitly corrects for the item properties, and measurement on an item-independent scale is possible. In addition, item response theory offers the use of test and item information as local reliability indices defined on the ability scale. In this chapter, it is shown how the main features of item response theory have given rise to the development of promising procedures for computerized testing. Among the topics discussed are procedures for item bank calibration, automated test construction, adaptive test administration, generating norm distributions, and diagnosing test scores.

Introduction

For two reasons automation of ability testing has become feasible. First, the large-scale introduction of computers in schools and the growing interest in their applications in the educational process among teachers and administrators have paved the way for computerized testing. Second, the introduction of item response models in test theory has been a decisive factor. In combination with methods from statistics and operations research already in use for other purposes, these models have features that make them very useful for computerized testing. The integration of computers, item response models, advanced statistics, and operations research methods has led to the notion of a computerized test system. The goal of this chapter is to focus on these developments.

This chapter is organized as follows: First, the notion of a computerized test system is explained. Then, some item response models proven to be useful in computerized testing are considered. The main part of the chapter follows, and consists of an introduction to the application of these models in procedures for computerized testing, namely for calibrating

Portions of this paper were presented at the European Conference on Information Technology in Education, University of Twente, Enschede, The Netherlands, May 20-23, 1986.

175
item banks, automated test construction, adaptive test administration, generating norm distributions, and diagnosing test scores. A short discussion of some other procedures in testing suited to automation is included at the end of the chapter.

Computerized Test Systems

A computerized test system is an integrated system for the storage of test items, the construction of tests, and the processing of item responses implemented on a computer. An important feature is the possibility of feedback from the processed item responses to the item bank in the system. Using this facility, the calibrations of the item properties can be updated and, consequently, improvement of the quality of test construction and of adaptive test administration procedures is possible.

The basic elements of a test system are given in the flowchart in Figure 4.1. The figure shows the activities and data sets in the system. In particular, data sets are represented by parallelograms and activities by circles. Activities consist of operations on data sets. Information flows are indicated by lines which should be read from the top to the bottom. In agreement with this, the data sets at the top of the diagram constitute the input to the system; the sets at the bottom are the output. In the activity Item Bank Processing an item bank is built up from individual test items. Test Construction is an activity in which a test is selected from the item bank such that its specifications in the test order are met as well as possible. Processing of Test Results refers to a transformation of the item responses into interpretable data as requested in the processing order. In Adaptive Testing, items are administered to an examinee one by one, each next item being selected so as to provide the most information at the level of the examinee's ability estimate which is based upon performance on the previously administered items. Flowcharts like the one in Figure 4.1 play an important role in the application of the ISAC (Information System Work and Analysis of Change) methodology to the design of a computerized test system (van Thiel & Zwarts, 1986).

An important data set in Figure 4.1 is the Item Bank; it can be considered the core of the test system. An item bank is a collection of items structured in two respects: It has a content as well as a psychometric structure. The content structure forms the link between the subject matter and the items. It serves as a classification scheme for the items and is an indispensable device when adding items to or retrieving them from the bank. The psychometric structure consists of the set of homogeneous ability scales underlying the bank, along with the calibrations of the items on these scales. Ideally, the psychometric structure amounts to a partition of the item bank into sets of homogeneous items, each nested within a topic from the content structure.

From an information science point of view, a test system is just a data processing system. When designing such a system several things are essential. For instance, it is important to use a systematic design methodology and not an ad hoc approach. Thus, the risk of design errors is reduced. Also, a standardized approach promotes efficient communication between all parties in the project. The choice of a data base management system is another critical step in the design of a test system. It must be able to cope with the interrelationships within and between various types of data (numerical, text, graphics) in the system and at the same time allow for a fast interaction with its users. The environment in which the test system has to operate determines its design to a considerable extent. It makes a great deal
of difference whether a system has to be designed for use by individual teachers (as has been the case, e.g. for PITA; Nitko & Hsu, 1984) or in support of a minimum competency testing program (see, for example, the Wisconsin Testing Program; Burke, Kaufman, & Webb, 1985). It also makes a great deal of difference whether the system will be used in school districts with a common curriculum or where each school can choose its own curriculum. The best way to adapt a test system to its environment is to involve its future users in the development process (for instance, by following a prototyping strategy). For a more extensive treatment of test systems design, readers are referred to van Thiel and Zwarts (1986).
Some Item Response Models

First, the case of dichotomously scored test items is considered. As the responses of a person \(a\) to an item \(i\) are considered to be the outcome of a process involving stochastic elements, they can be represented by a random variable \(U_{ai}\) taking the value \(u_{ai} = 1\) for a correct and \(u_{ai} = 0\) for an incorrect response. Let \(\theta_a\) defined on the interval \([-\infty, +\infty]\) denote the ability of person \(a\) underlying his/her responses to a homogeneous set of items in the bank. One of the most flexible item response models in use is the 3-parameter logistic model:

\[
P(U_{ai} = 1) = c_i + (1 - c_i) \left[1 + \exp \left(-a_i (\theta_a - b_i) \right) \right]^{-1}. \tag{4.1}
\]

where \(b_i [-\infty b_i \leq \infty]\) and \(a_i [a_i \geq 0]\) are parameters for the difficulty and discriminating power of item \(i\), respectively, and \(0 \leq c_i \leq 1\) is a lower asymptote to the probability of a correct response reached when the person guesses blindly (Hambleton & Swaminathan, 1985; Lord, 1980). Most of the procedures for computerized testing in this chapter can be applied for this model. Others, however, capitalize on the properties of a more restrictive model proposed by Rasch (1960):

\[
P(U_{ai} = 1) = \exp (\theta_a - b_i) \left[1 + \exp (\theta_a - b_i) \right]^{-1}. \tag{4.2}
\]

Formally, the model in eqn. (4.2) follows from eqn. (4.1) by imposing the restrictions \(a_i = \text{const} > 0\) and \(c_i = 0\). However, statistically, the models are quite different due to the fact that eqn. (4.2) belongs to the exponential family of probability distributions (e.g., Andersen, 1980, Chap. 6) but eqn. (4.1) lacks this property.

Item response models are appropriate for item banking because, unlike classical test theory, they parameterize items and examinees separately. This is immediately clear from the fact that in eqns. (4.1) and (4.2) the probability of a correct response, which characterizes an interaction between a person and an item, is decomposed into separate sets of parameters for the person and the item. The Rasch model, however, has an additional property not immediately clear from eqn. (4.2) but rendering it quite appropriate for item banking — the separability of the (maximum likelihood) parameter estimates. This property says that, not only in the model itself but also in its estimation, the parameters can be dealt with independently. More concretely, it implies that the likelihood equations for the estimation of the examinee parameters do not contain any (known or unknown) item parameter, and conversely.

For item banking this is a helpful feature since data from every person, even if he or she has responded to only a small number of items, may be accumulated for updating the item parameter estimates (Choppin, 1968; van der Linden & Eggen, 1987).

A possible criticism of the models in eqns. (4.1) and (4.2) is their restriction to dichotomously scored items. An alternative to eqn. (4.2) still retaining its statistical properties but appropriate for items with more response categories is the Partial Credit Model (Masters, 1982). Let \(U_{ai}\) have possible values \(u_{ai} = 0, 1, \ldots, m_i\), and let \(b_{ik}\) be the difficulty of reaching the \(k^{th}\) rather than the \((k-1)^{th}\) response category. The model can then be written as
It should be noted that in this model the rank of the highest response category, \(m_i \), is indexed by \(i \). Therefore the number of categories may vary across the items and the model can be applied to banks of items of mixed format.

Procedures for Computerized Ability Testing

Procedures for computerized ability testing based on item response theory will be considered next. The first procedure deals with an aspect of item bank calibration, namely optimization of its sampling design. The next two have to do with the use of item response theory in test construction and adaptive testing. How item response theory can be applied in test score interpretation by providing procedures for generating norm distributions and diagnosing response patterns will be discussed in the final section.

Calibrating an Item Bank

At first glance, calibrating an item bank seems to be no more than just estimating the parameters of the items in the bank from a sample of response data. In fact however, mainly as a result of the following three problems, item bank calibration is not that simple: First, an item bank usually contains more items than an examinee can answer in one administration. Second, it may not be clear beforehand whether the item bank covers one or more ability dimensions. Third, interest is usually not in the abilities of the individual examinees in the sample but in an estimate of the ability distribution in the population of interest (Zwarts, Veldhuizen, & Verhelst, 1986). The first two points will now be discussed in more detail; the third point will be taken up in one of the later sections.

An item bank generally contains hundreds of items, many more than a single examinee can answer. This means that different subsets of items must be administered to different subsets of examinees and that the responses must be analyzed either in one analysis from an incomplete sample or in separate analyses from complete samples equating the results afterwards. A traditional solution along the former line is multiple-matrix sampling (Shoemaker, 1973), but this procedure is only appropriate for estimating classical test and item parameters. In item response theory the latter approach is usual (see, for example, Hambleton & Swaminathan, 1985; Lord, 1980). Vale (1986) reports results from a study into the accuracy of several designs for linking parameter estimates of multiple sets of items onto a common scale. For the logistic response models, estimation of the item parameters from a single sample with an incomplete design is possible (Lord, 1974). In addition, for the Rasch model, it is exactly known what condition the data from an incomplete sample have to meet to guarantee the existence of unique (maximum likelihood) estimates (Fischer, 1981).

An item bank covering a large number of topics can hardly ever be expected to be unidimensional. Since the dimensionality of a bank is determined by its items as well as the
population of examinees it serves, unidimensionality can often be reached by splitting the bank and/or the population. In doing so, the results should be in agreement with the topic structure of the items, but even then a large number of possibilities for finding adequate ability scales will remain. If prior to sampling the response data no hypothesis about the ability structure is available, it has to be found by exploratory methods. However, the price one has to pay is that, in retrospect, the sample may be less informative about the item parameters than when designed with a hypothesis about the ability structure built into optimization models.

Test Construction

The traditional way of constructing a test is to write the test items and collect them in a test form. In a computerized test system, a large collection of pretested and calibrated items is available in the item bank and test construction is reduced to selecting a number of items such that previously established test specifications are met. The purpose of this section is to show that automation of the selection procedure is possible using the concepts of item and test information functions from item response theory.

In classical test theory the reliability coefficient is the index of measurement accuracy for the observed test scores. As a product–moment correlation coefficient, it is population dependent in the sense of representing the accuracy of measurement of the distribution of test scores for the given population of examinees. A change in this distribution will generally lead to a change in the value of its reliability coefficient. Another less favorable aspect of the reliability coefficient is that it does not give any information on the accuracy by which a specific ability level is measured. Both properties of the reliability coefficient are not very practical in item banking where tests are often administered individually or have to be tailored to certain ability levels.

In item response theory the classical concept of reliability is replaced by the concepts of item and test information functions. These can be considered as local measures of reliability indicating the accuracy by which an item or a test measures a specific ability level. In fact, these information functions are generally known in statistics as Fischer's information in the sample, but are considered as a function of the ability parameter here. Let $I_i(\theta)$ and $I_t(\theta)$ denote the information functions for an item i and test t, respectively (see, e.g., Hambleton & Swaminathan, 1985, Sect. 6.3). Because of the property of local independence, information functions have the feature of additivity. For a test of n items, it then holds that

$$\sum_{i=1}^{n} I_i(\theta) = I_t(\theta). \quad (4.4)$$

The property of additivity immediately suggests the following application in a computerized test system: Together with the items their information functions are stored in the system. If a test has to be selected, the user specifies a target function for the test and the system selects the items from the bank such that the sum of their information functions approximates the target function as closely as possible. Requirements with respect to the number of items in the test, their coverage of certain topic areas, and the like, are
constraints to be imposed on the selection process.

Theunissen (1985, 1986; see also Theunissen & Verstralen, 1986) was the first to formulate an optimization model to implement this selection process. His objective function was the minimization of the number of items in the test. In the model, decision variables, x_i, $i = 1, \ldots, I$, are needed to indicate if item i from the bank is included in the test ($x_i = 1$) or not ($x_i = 0$). It follows that the number of items in the test is equal to $I \sum x_i$. A minimal test length certainly is an attractive objective, but without any constraints on the objective function, minimization of $\sum x_i$ would yield $x_i = 0$ for $i = 1, \ldots, I$ as the solution. Hence, additional constraints are needed. Suppose the interest in the test information can be restricted to its values in the points θ_k, $k = 1, \ldots, K$. Let $I(\theta_k)$ denote the values of the target information function for the test at these points. Then a useful constraint is to require that, at each point, the value of the sum of the item information functions is as least as large as the value of the target. This leads to the following simple optimization model:

$$\begin{align*}
\text{minimize } & \sum x_i \\
\text{subject to } & I (\theta_k) x_i \geq I(\theta_k), k = 1, \ldots, K \\
& x_i \in \{0,1\}, i = 1, \ldots, I
\end{align*}$$

This model is a linear programming model for which algorithms and computer programs exist to solve for the optimal values of x_i, $i = 1, \ldots, I$. For efficient heuristic procedures to solve (4.5) to (4.7), see Boomsma (1986). The idea of applying linear programming models in automated test construction has been pursued further in a series of papers. Boekkooi-Timmenga (1986, 1989) presents optimization models for the simultaneous construction of more than one test, with the construction of parallel tests as a special case. Models with other objective functions than minimization of test length and various practical constraints are given in van der Linden and Boekkooi-Timmenga (1989). Some examples of automated test construction can be found in Boekkooi-Timmenga and van der Linden (1988).

Adaptive Testing Procedures

At the level of a single examinee, test construction is based on a dilemma. The property of additivity of information functions in eqn. (4.4) shows that a test for a single examinee could be selected optimally from the item bank if his or her ability were known. However,
the very reason for testing an examinee is that this quantity is not known. The test construction model in eqns. (4.5) to (4.7) offers some relief in that it guarantees that, wherever the examinee is located on the ability scale, the information from the test does exceed the target values, but the price one has to pay is that for an examinee with a known ability the test generally is longer than necessary. Actually, eqns. (4.5) to (4.7) are a model for designing group-based tests, not for tests tailored to individual administrations as needed in modern computerized testing applications. A solution to this dilemma is adaptive testing.

In adaptive testing, the decisions about which items to administer are not made prior to the test administration. Instead, they are made sequentially during the testing session. In doing so, the choice of each next item is based on an ability estimate derived from the responses to the previous items. At first the ability estimates are rough, but at each step further information is gathered allowing the items selected to be more and more on target. Useful references to description of adaptive testing procedures are Hambleton and Swaminathan (1985, Sect. 13.3), Lord (1970, 1980, Chap. 10), and Weiss (1982). Adaptive testing has been made feasible by the introduction of the computer in testing. Only a computer is able to update the ability estimates and to search the item bank for the next items in such a quick way that the adaptive testing session runs smoothly without disturbing waiting times. The other source of the adaptive testing technology is item response theory. The feasibility of adaptive testing procedures hinges on the availability of larger collections of test items with known properties, procedures for ability estimation, and rules for item selection. How item response theory meets the first two conditions has already been shown in the foregoing; two major rules for item selection in adaptive testing — the maximum-information rule and a Bayesian sequential rule — will now be discussed.

An obvious rule is the following: The response vector associated with the previous items is used to produce a maximum-likelihood estimate of the examinee’s ability. The next item is then selected such that its value for the item information function is maximal at the estimated ability level of the examinee. For the one- and two-parameter logistic models the item information function is symmetric about \(\theta = h \), and reaches its maximum at this value. Therefore, the maximum-information rule in this case reduces to selecting the item with \(h \) at the smallest distance from \(\theta \). For the three-parameter model, the form of the information function is more complicated and the actual values of the information functions at \(\theta \) for all items in the bank have to be calculated to pick out the item with the maximum value.

A disadvantage of the maximum-information rule is that, in particular in the beginning of the procedure, the ability estimates do not need to be finite. This occurs if all item responses are either correct or incorrect and can easily be remedied by administering a few hard or easy items, respectively. An item selection rule without this problem is Owen’s (1975) suggestion to apply the Bayesian sequential framework. In this procedure, maximum-likelihood estimation is replaced by the calculation of a posterior distribution for the examinee’s ability which serves as the prior distribution for the next step in the procedure. The next item is then found by preposterior analysis: For each item the expected reduction in the variance of the prior distribution is estimated. The item with the largest reduction promises most information about the examinee’s ability level and is the optimal choice. With both rules the first step is of critical importance. In the maximum-information approach this is the selection of the first item, while in the Bayesian approach it is the first prior. If these are chosen too far from the examinee’s actual ability level, the
procedure will be unnecessarily long.

Generating Norm Distributions

A common practice in ability testing is to provide examinees with information about their relative standing in some norm population. Usual norm populations are examinees of the same age, examinees who are taught the same curriculum, or experts at a given skill. The probability distribution of test scores for a norm population is known as the norm distribution. The usual way of providing test scores with normative information is to transform them into percentile scores for a relevant norm distribution.

The use of norm distributions has had a long tradition in the practice of standardized testing. In this tradition, abilities have been measured with standardized tests especially developed and pretested for this purpose, guaranteeing comparability of test scores by maintaining the same test for a long period for the population of examinees. As a consequence, the same norm distribution applies to all examinees, while, in principle, the test score of each examinee can be used for updating the estimates of these distributions. This practice, however, is not feasible for test systems in which item banks are used and tests are tailored to small-scale administration. In such cases it is impossible to estimate norm distributions for all possible tests from the bank, the reason simply being that the number of possible tests is too large. (To illustrate this point: For an item bank consisting of only 33 items, no fewer than \(2^{33}\) different tests are possible, just enough to give each inhabitant of the world his/her own test.)

Using item response theory, the problem of establishing norm distributions can be dealt with in a different and, to some extent, more elegant fashion. Instead of establishing and updating distributions on the test score variables of all possible tests, this is done for the ability parameter in the model. In this way, a test-independent norm distribution is built up. As soon as a test is selected from the bank, the system is able to generate a norm distribution using the ability distribution of the relevant population and the values of the item parameters in the test.

It was noted earlier that in item bank calibration the interest usually is not in the individual examinees' abilities but in their distribution in a population. The reason is now clear: Knowledge of this distribution is a prerequisite for generating norm distributions for tests from the bank. In order to be able to estimate an ability distribution, the model has to be extended somewhat. In analysis-of-variance terminology, what is needed is a mixed model for a design with items as a fixed and examinees as a random factor. Item response models can easily be extended into a mixed model by changing over to a model for the marginal probability of a correct response. Let \(F_p(\theta)\) denote the distribution function of a correct response as a function of \(\theta\) for norm population \(p\), whereas \(p_i(\theta)\) represents the probability of a correct response as a function of \(\theta\) as given by the item response model. The marginal probability for item \(i\) and population \(p\), \(\pi_{pi}\), is given by

\[
\pi_{pi} = \int p_i(\theta) dF_p(\theta).
\]

The ability distribution \(F_p(\theta)\) can be approached in different ways. One possibility is to follow a nonparametric approach in which it is approximated by a histogram, the relative frequencies of which are the quantities to be estimated (Bock & Aitkin, 1981; de Leeuw
& Verhelst, 1986). Another is to assume a parametric form for the distribution, for instance, the normal distribution (Sanathanan & Blumenthal, 1978; Zwarts & Veldhuizen, 1985) or the more flexible lambda distribution (Verstralen, 1984), and to estimate its parameters. In either case the use of an EM-algorithm may be an appropriate choice for getting maximum-likelihood estimates (Bock & Aitkin, 1981; Zwarts & Veldhuizen, 1985). If students are sampled from different norm populations, more than one distribution has to be estimated. If the distributions differ only in their locations, it is possible to impose a linear model on the population means making parameter estimation more efficient. Alternative models can be compared using a likelihood-ratio test (Zwarts & Veldhuizen, 1985).

Instead of generating a norm distribution for a test from the bank, it is also possible to work the other way around, transforming the ability estimates into percentiles of the distribution on the ability scale. This is computationally less involved but has the disadvantage of reporting normative score interpretations to users of the test system with respect to a distribution they may not understand. Hambleton (1980; see also Hambleton & Swaminathan 1985, Sect. 12.4) presents an approach in which this procedure is followed but the ability estimates are used to predict the scores on a standard test from the bank for which normative information is available.

The most surprising thing to note about the procedures in this section is that they can be used to generate normative information for a test even though none of its items were administered to the sample of examinees from which \(F_x(\theta) \) was estimated. Again, this is one of the advantages of using an item response model to calibrate the test items before the item bank is used in the test system.

Diagnosing Test Scores

Providing examinees with information about their relative standing in some norm population usually is not sufficient. Most consumers of test scores want to know what their scores mean. Item response theory also offers a promising application to this problem of test score interpretation.

If a test from the bank has been administered to an examinee, an estimate of his or her value for the ability parameter in the model is available. As the values of the item parameters are also known with sufficient precision, the response model can be used to give estimates of the success probabilities on all items in the bank for the examinee. Thus from a single test score a test system is able to predict the expected performances of an examinee on hundreds of problems typical of the subject area. This method, known as scale scoring, offers a very powerful way of providing test scores with a behavioral interpretation. Originally, the idea of scale scoring was presented by Thurstone (1925); however, it was forgotten for over fifty years. Scale scoring was rediscovered for the purpose of reporting results from national assessment studies (Pandey, 1986; Pandey & Carlson, 1983). It has also been used for reporting diagnostic information from achievement tests (Woodcock, 1976). The basic idea of scale scoring is that the ability scale cannot only be used to calibrate the items but that the locations of items, in turn, also define the ability scale through showing what problems examinees are able to solve with a certain probability. Figure 4.2 gives a fictitious example of scale score reporting. For a logistic test model without a guessing parameter, the examinees are able to solve all
problems below their ability level with a probability larger than 0.50; for problems above their level this probability is smaller. It is an easy job for a computerized test system to print such graphs. In doing so, more precise estimates of success probabilities on the items can be displayed as numerical information in the graph.

Concluding Remarks

The purpose of this chapter was to illustrate some promising applications of item response theory in computerized ability testing. Not all possibilities have been discussed here. Other applications in progress are, for instance, automated item bias detection for subgroups of students (Kelderman, 1986), interactive setting of performance standards (van der Linden, 1986a), and the generation of classical test and item indices for tests from the bank (van der Linden, 1986b). These applications also illustrate how fruitful the use of item response theory in computerized testing can be.

References

van der Linden, W. J. (1986b). Item banking met een dialoog gebaseerd op klassieke item en testparameters [Item banking with a dialogue based on classical item and test parameters]. In G. R. Buning, T. J. H. M. Eggen, H. Kelderman, & W. J. van der Linden (Eds.). Het gebruik van het Raschmodel voor een decentraal toetservicesysteem (Rapport 86-3). Enschede, The Netherlands: University of Twente, Department of Education.

Applications of Item Response Theory

Biographies

Wim J. van der Linden is Professor of Educational Measurement and Data Analysis at the University of Twente, Enschede, The Netherlands. He holds a Ph.D. in psychometric theory from the University of Amsterdam and studied psychology and sociology with a specialization in quantitative methods at the University of Utrecht, The Netherlands. His research interests center on item response theory and statistical decision theory as well as their applications in education. Currently, he serves on the Editorial Boards for the Journal of Educational Measurement and Applied Psychological Measurement.

Michel A. Zwarts is Director of the Automated Test System Project at the National Institute of Educational Measurement (Cito), Arnhem, The Netherlands. Dr. Zwarts studied educational psychology at the University of Nijmegen and received his Ph.D. from the University of Utrecht, The Netherlands, with a dissertation addressing the construction of criterion-referenced tests. His major interest is the application of information technology and psychometric theory in education.