Hyperellipsoidal SVM-Based Outlier Detection Technique for Geosensor Networks

Share/Save/Bookmark

Zhang, Yang and Meratnia, N. and Havinga, P.J.M. (2009) Hyperellipsoidal SVM-Based Outlier Detection Technique for Geosensor Networks. In: Third International Conference on Geosensor Networks, 13-14 July 2009, Oxford, UK.

[img]PDF
Restricted to UT campus only
: Request a copy
327Kb
Abstract:Recently, wireless sensor networks providing fine-grained spatio-temporal observations have become one of the major monitoring platforms for geo-applications. Along side data acquisition, outlier detection is essential in geosensor networks to ensure data quality, secure monitoring and re- liable detection of interesting and critical events. A key challenge for outlier detection in these geosensor networks is accurate identification of outliers in a distributed and online manner while maintaining resource consumption low. In this paper, we propose an online outlier detection technique based on one-class hyperellipsoidal SVM and take advantage of spatial and temporal correlations that exist between sensor data to cooperatively identify outliers. Experiments with both synthetic and real data show that our online outlier detection technique achieves better detection accuracy compared to the existing SVM-based outlier detection techniques designed for sensor networks. We also show that understanding data distribution and correlations among sensor data is essential to select the most suitable outlier detection technique.
Item Type:Conference or Workshop Item
Faculty:
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:http://purl.utwente.nl/publications/67815
Official URL:http://dx.doi.org/10.1007/978-3-642-02903-5_4
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page