A noise-cancelling technique in a wideband LNA achieves low noise figure (NF) and source impedance matching without global feedback. The 0.25μm LNA provides <2.4dB NF from 0.01-2GHz, total voltage gain is 13.7dB, -3dB bandwidth is 0.01-1.6GHz, S11 is <-36dB, and S12 is <-10dB. IIP2 is 12dBm, and IIP3 is 0dBm drawing 14mA at 2.5V.

Outline

- Introduction
- Existing Wideband Techniques
- Noise Canceling Technique
- CMOS Circuit Implementation
- Measurement Results
- Conclusions

Introduction: (1)

- Why Wideband LNAs?
 - Wideband Receiver
 - E.g.: CATV
 - Multiband Receiver
 - E.g.: Base Station
- Implementation: ✓ CMOS ✓ No Inductors

Introduction: (2)

- Key LNA Requirements:
 - Multi-decade Bandwidth: MHz -> GHz
 - Source Impedance Matching: \(Z_{IN}=R_S \)
 - Low Noise Figure (NF): <3dB
- Other:
 - Gain, Linearity, Isolation, ... etc.

Existing Wideband Techniques: (1)

- Input device determines \(F=\frac{SNR_{OUT}}{SNR_N} \)
- \(F \) to \(Z_{IN}=R_S \) Trade-off:
 - Low \(F \) Laaaaaarge \(g_m \) and \(R_i \)
 - \(Z_N=R_S \) \(\frac{1}{g_m}=\frac{1}{R_S} \) and \(R_S=R_g \) \(F>2 \) (NF>3dB)!!

Existing Wideband Techniques: (2)

- \(F \) to \(Z_{IN}=R_S \) decoupling via feedback
 - \(F=1+\frac{\frac{1}{g_m}}{\frac{1}{g_m}+R_S/R} = 1+\frac{R_S}{R} \)
 - \(R_{IN}=\frac{1}{1+Av} \)
 - \(Av=\)Multiple stages \(\bigstar \) Instability!
 - \(\bigstar \) Matching and Gain coupled \(\bigstar \) AGC@\(Av=R_g \)!
 - \(\bigstar \) Loop-gain <1 for \(Av \) \(\bigstar \) Modest Linearity!

Noise Canceling Technique: Principle (1)

- \(R_{IN}=\frac{1}{g_m} \)
- \(\bigstar \) Signals @ nodes X and Y: OPPOSITE SIGN
- \(\bigstar \) Noise @ nodes X and Y: EQUAL SIGN!
Noise Canceling Technique: Principle (2)

\[\text{Noise Cancels if } V_{in} A + V_n = 0 \quad \Rightarrow \quad A = \frac{1}{1 + R/R_n} \]

But Signals Add!!

Matching, ...but no output noise \[R_n \text{ and } F \text{ decoupled} \]

Depends on \(R_s \)

Noise Canceling Technique: Properties (1)

\[F = 1 - \frac{2}{A_{VF}} \cdot \frac{8 - 6 A_{VF} + A_{VF}^2}{A_{VF}^2} > 1 - \frac{2}{A_{VF}} \]

Feed-forward \[\Rightarrow \text{ Instability risks relaxed} \]

Matching and Gain decoupled \[\text{AGC} \quad \Rightarrow \quad R_n = R_s \]

Noise Canceling Technique: Properties (2)

\[I_{Bias} \]

- Bias noise \(I_{bias1} \), cancels too
- Robust to device parameter variations:
 - \(\text{Canceling independent of: } Z_y, Z_o, Z_n = 1/g_{m1} \)
 - \(\text{For } \varepsilon = g_{m2}/g_{m3} \cdot 1 - R/R_s \quad \Rightarrow \quad F = 1 + \text{NEF} \cdot (\varepsilon A_{VF}) \)
 (Monte Carlo: \(4 \sigma(NF) < 0.2 \text{dB} @ 2 \text{GHz} \))

Noise Canceling Technique: HF Limitations

\[C_{\text{IN}} \]

\(C_{\text{IN}} \) Noise canceling degrades @ HF

\(\Delta N(f) = 0.1 \text{dB@1GHz and 0.4dB @2GHz (Simulation)} \)

- Compensation helps e.g. shunt peaking

CMOS Circuit Implementation: Schematic

AC coupling: HPF

Bias decoupling

Inverter: Larger \(g_{m}/I_o \)

- Better Isolation
- Lower \(C_{\text{IN}} \)

CMOS Circuit Implementation: Simulation

Cancellation check:

\[S_W: \text{CLOSED, } C_2 = 0 \]

\[S_W: \text{OPEN} \]

Yes! It works

CMOS Circuit Implementation: Chip

\[0.25 \text{mm} \]

\[0.3 \text{mm} \]

Measurement Results: (On-Wafer)

\[f \text{ [MHz]} \]

Continued on Page 533
Continued from page 331

Measurement Results: NF (PCB)

- **NOISE FIGURE NF$_{200}$**
 - [Graph showing NF vs. frequency](image)
 - Due to $C_{in}=1.2pF$

Measurement Results: IIP2 (PCB)

- **OUTPUT POWER P_{out}**
 - [Graph showing P_{out} vs. P_{in}](image)
 - $f_1=200MHz$ and $f_2=300MHz$

Measurement Results: IIP3 (PCB)

- **OUTPUT POWER P_{out}**
 - [Graph showing P_{out} vs. P_{in}](image)
 - $f_1=900MHz$ and $f_2=905MHz$

Measurement Results: Summary

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>A_{FE}</td>
</tr>
<tr>
<td>-3dB BW</td>
<td>2-1600 MHz ($C_{GAS}=C_{PD}=0.2pF$)</td>
</tr>
<tr>
<td>$</td>
<td>S_{21}$</td>
</tr>
<tr>
<td>$</td>
<td>S_{11}$</td>
</tr>
<tr>
<td>$</td>
<td>S_{22}$</td>
</tr>
<tr>
<td>IIP3 (input ref.)</td>
<td>0 dBm ($f_1=900MHz$ & $f_2=905MHz$)</td>
</tr>
<tr>
<td>IIP2 (input ref.)</td>
<td>12 dBm ($f_1=200MHz$ & $f_2=300MHz$)</td>
</tr>
<tr>
<td>ICP1 (input ref.)</td>
<td>-9 dBm ($f_1=900 MHz$)</td>
</tr>
<tr>
<td>NF_{S11}</td>
<td>$<=2dB [0.25-1.1 GHz]$ & $<=2.4dB [0.15-2 GHz]$</td>
</tr>
<tr>
<td>f_{NC}</td>
<td>$14mA @ 2.5Volt$</td>
</tr>
<tr>
<td>Area and Technology</td>
<td>$0.3x0.25mm^2$ in a 0.25um CMOS</td>
</tr>
</tbody>
</table>

Conclusions:

New Wideband Low-Noise Technique:
- Matching-device noise cancels: NF & match decoupled!
- Wideband sub 3dB NF
- Good stability (feed-forward)
- Variable gain @ constant match

Demo: 0.25um CMOS LNA
- 14dB gain over > 2 decades (2-1600MHz)
- NF< 2.4dB over > 1 decade (150-2000 MHz)

Generalization:
- Other implementations, devices and WB building-blocks.