Collection Selection with Highly Discriminative Keys


Bockting, S. and Hiemstra, D. (2009) Collection Selection with Highly Discriminative Keys. In: Proceedings of the 7th Workshop on Large-Scale Distributed Systems for Information Retrieval, 23 Jul 2009, Boston, USA (pp. pp. 9-16).

open access
Abstract:The centralized web search paradigm introduces several problems, such as large data traffic requirements for crawling, index freshness problems and problems to index everything. In this study, we look at collection selection using highly discriminative keys and query-driven indexing as part of a distributed web search system. The approach is evaluated on different splits of the TREC WT10g corpus. Experimental results show that the approach outperforms a Dirichlet smoothing language modeling approach for collection selection, if we assume that web servers index their local content.
Item Type:Conference or Workshop Item
Electrical Engineering, Mathematics and Computer Science (EEMCS)
Research Group:
Link to this item:
Official URL:
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page