Three-Dimensional Computational Fluid Dynamics Modeling of a Prismatic Spouted Bed


Gryczka, O. and Heinrich, S. and Deen, N.G. and Kuipers, J.A.M. and Mörl, L. (2009) Three-Dimensional Computational Fluid Dynamics Modeling of a Prismatic Spouted Bed. Chemical Engineering & Technology, 32 (3). pp. 470-481. ISSN 0930-7516

[img] PDF
Restricted to UT campus only
: Request a copy
Abstract:Modern simulation tools like discrete particle models or continuum models have been established as precious methods to gain insight into the complex processes in fluidized and spouted beds. Valuable information on parameters influencing the hydrodynamics can be obtained directly from computer simulations. Numerous researchers applied two-dimensional discrete and continuum models to simulate fluidized and spouted beds. However, only few publications deal with three-dimensional continuum simulations, and very often results of three-dimensional experiments are compared with two-dimensional results. In this work, a three-dimensional simulation by application of a continuum model is presented in a prismatic spouted bed with slit-shaped gas inlets. Comparisons with two-dimensional simulations in the same geometry (Gryczka et al. 2009, Chem. Eng. Sci., in press) are also part of this publication. The influence of the third dimension on the hydrodynamic behavior (bubble formation, bubble size, etc.) will be discussed.
Item Type:Article
Copyright:© 2009 Wiley-VCH Verlag
Research Group:
Link to this item:
Official URL:
Export this item as:BibTeX
HTML Citation
Reference Manager


Repository Staff Only: item control page